Gene function identified in type 1 diabetes progression

July 23, 2014 by Kerry Faulkner
The pancreas: type 1 diabetes is caused when the pancreas fails to produce enough insulin because the necessary beta-cells have been destroyed by the body’s immune system. Credit: Rafael Mondini

IDENTIFYING a genetic weakness that causes type 1 diabetes in children has opened the way for development of a treatment capable of preventing the disease.

The genetic weakness has been pinpointed by researchers at Perth's Harry Perkins Institute of Medical Research working as part of a global consortium, who studied the mechanisms for the gene cathepsin H (CTSH) to influence in the pancreas of type 1 diabetics.

Type 1 diabetes is caused when the pancreas fails to produce enough insulin because the necessary beta-cells have been destroyed by the body's immune system.

The research shows CTSH may affect disease progression by modulating the survival and function of which are the target of autoimmune assault.

However, the exact way CTSH works in beta-cells has not been determined— of CTSH has been found to be beneficial but a weakness in the CTSH gene can make cells more vulnerable to an .

The Institute's Grant Morahan says the research investigated over 200 blood samples at the gene's RNA and protein levels from patients worldwide, to see how changed.

"Our results showed the CTSH gene was active but we had to go to the next step and show that RNA was translated into protein—that was really dotting the 'I's and crossing the 'T's," Prof Morahan says.

"Type 1 diabetes is due to the insulin producing beta-cells being destroyed by an autoimmune response and this particular variant in the CTSH gene makes those cells more vulnerable to attack from the immune system.

"This is crucial, because now we know the exact molecular weakness in beta cells."

CTSH gene presence also protects beta-cells

The WA team's Danish collaborators showed higher levels of the CTSH gene protected the body's antibody-producing beta-cells from dying when attacked by the immune system. Those people with higher levels had better cell function and slower progression to .

Professor Morahan says proving this protective capability means it is possible to develop drugs either to increase production of the gene in beta-cells, or to mimic the function of CTSH in beta cells and prevent the disease.

"We should now try and find some way of blocking the biochemical pathway to cell death that the CTSH molecule participates in, so that's what people will be looking at in the next stage," he says.

"Type 1 diabetes affects children and they have it for the rest of their lives so the goal of our research is to come up with a way to prevent children from getting ."

Explore further: Connexins: Providing protection to cells destroyed in Type 1 diabetes

More information: "CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients." Tina Fløyel, et al. PNAS DOI: 10.1073/pnas.1402571111

Related Stories

Loss of function of a single gene linked to diabetes in mice

January 4, 2014

Researchers from the University of Illinois at Chicago College of Medicine have found that dysfunction in a single gene in mice causes fasting hyperglycemia, one of the major symptoms of type 2 diabetes. Their findings were ...

Researchers find new pathway connected to type 2 diabetes

March 19, 2014

Scientists at the Children's Hospital of Eastern Ontario (CHEO) Research Institute have discovered a cellular pathway that is responsible for keeping blood sugar levels low in obese or pre-diabetic people, and may prevent ...

Recommended for you

'CYCLOPS' algorithm spots daily rhythms in cells

April 25, 2017

Humans, like virtually all other complex organisms on Earth, have adapted to their planet's 24-hour cycle of sunlight and darkness. That circadian rhythm is reflected in human behavior, of course, but also in the molecular ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.