Neurons, brain cancer cells require the same little-known protein for long-term survival

July 15, 2014
In brain cancer cells, the protein PARC plays a key role in long-term cell survival. In both images, the red represents the protein cytochrome c, which is released when mitochondria are damaged and trigger apoptosis -- cell suicide. At left, injured brain cancer cells exhibit little cytochrome c; they use the protein PARC to degrade the released cytochrome c, allowing the cancer cells to survive. At right, when researchers reduced PARC, cytochrome c accumulated, allowing apoptosis to carry on. Credit: Vivian Gama, PhD, UNC School of Medicine

Researchers at the UNC School of Medicine have discovered that the protein PARC/CUL9 helps neurons and brain cancer cells override the biochemical mechanisms that lead to cell death in most other cells. In neurons, long-term survival allows for proper brain function as we age. In brain cancer cells, though, long-term survival contributes to tumor growth and the spread of the disease.

These results, published in the journal Science Signaling, not only identify a previously unknown mechanism used by for their much-needed survival, but show that cells hijack the same mechanism for their own survival.

The discovery will lead to new investigations of brain cancer treatments and provides insight into Parkinson's disease, including a potential new research tool for scientists.

"PARC is very similar to Parkin, a protein that's mutated in Parkinson's disease," said Mohanish Deshmukh, a professor of cell biology and physiology and senior author of the Science Signaling paper. "We think they might work in tandem to protect neurons."

If so, researchers can investigate the interplay between these proteins to create better drugs to treat the second-most prevalent neurodegenerative disease after Alzheimer's disease.

Vivian Gama, PhD, a postdoctoral fellow in Deshmukh's lab, led the experiments in cell cultures and animal models. First, she used external stimuli to promote the damage of mitochondria – the energy sources for cells. In most cell types, when mitochondria are damaged, they release a protein called cytochrome c, which triggers a cascade of biochemical steps that end in – a process known as apoptosis.

Working with neurons, though, Gama found that the protein PARC/CUL9 blocked this process; it degraded cytochrome c, halted apoptosis, and allowed for long-term cell survival. "In this setting, we want PARC to do that because we want neurons to survive as long as possible," said Gama, first author of the Science Signaling paper.

Deshmukh, a member of the UNC Neuroscience Center and the UNC Lineberger Comprehensive Cancer Center, said, "In Parkinson's disease, we know that Parkin targets damaged mitochondria for degradation. However, exactly what happens to the proteins, such as cytochrome c, that are released from the damaged mitochondria has been unknown. Now, we think PARC plays a role in this process."

Deshmukh and Gama's work could lead to an alternative way to study Parkinson's disease. Other researchers have created mouse models that lack the Parkin gene, but Gama said these models don't have many of the hallmark symptoms that human patients have, making the model less than desirable for researchers. "Our hypothesis is that in the absence of Parkin, PARC still does the job," Gama said, "as it may allow cells to survive."

Gama and Deshmukh are now creating a model that lacks both the Parkin and PARC genes.

They will also investigate PARC as a target for cancer treatment.

"We tested several cancer cell lines and found that PARC degrades cytochrome c in medulloblastoma, a cancer of the central nervous system and in neuroblastoma, a cancer of the peripheral nervous system," Gama said. "Not all cytochrome c is degraded; there are likely other factors involved. But PARC is an important player."

When Gama and colleagues triggered the apoptotic process in brain cancer cells, they found that PARC allowed the cells to survive. When PARC was inhibited, the cells were more vulnerable to stress and damage, which means they could be more vulnerable to compounds aimed at destroying them.

Deshmukh said, "We show that brain co-opt PARC to bypass apoptosis in the same way that neurons do and for the exact same purpose."

Explore further: Unleashing the watchdog protein

Related Stories

Unleashing the watchdog protein

May 9, 2013
McGill University researchers have unlocked a new door to developing drugs to slow the progression of Parkinson's disease. Collaborating teams led by Dr. Edward A. Fon at the Montreal Neurological Institute and Hospital -The ...

Researchers identify new gene involved in Parkinson's disease

June 4, 2014
A team of UCLA researchers has identified a new gene involved in Parkinson's disease, a finding that may one day provide a target for a new drug to prevent and potentially even cure the debilitating neurological disorder.

Chinese herbal extract may help kill off pancreatic cancer cells

July 1, 2014
A diagnosis of pancreatic cancer—the fourth most common cause of cancer death in the U.S.—can be devastating. Due in part to aggressive cell replication and tumor growth, pancreatic cancer progresses quickly and has a ...

Recommended for you

A sodium surprise: Engineers find unexpected result during cardiac research

July 20, 2017
Irregular heartbeat—or arrhythmia—can have sudden and often fatal consequences. A biomedical engineering team at Washington University in St. Louis examining molecular behavior in cardiac tissue recently made a surprising ...

Want to win at sports? Take a cue from these mighty mice

July 20, 2017
As student athletes hit training fields this summer to gain the competitive edge, a new study shows how the experiences of a tiny mouse can put them on the path to winning.

Engineered liver tissue expands after transplant

July 19, 2017
Many diseases, including cirrhosis and hepatitis, can lead to liver failure. More than 17,000 Americans suffering from these diseases are now waiting for liver transplants, but significantly fewer livers are available.

Lunatic Fringe gene plays key role in the renewable brain

July 19, 2017
The discovery that the brain can generate new cells - about 700 new neurons each day - has triggered investigations to uncover how this process is regulated. Researchers at Baylor College of Medicine and Jan and Dan Duncan ...

'Smart' robot technology could give stroke rehab a boost

July 19, 2017
Scientists say they have developed a "smart" robotic harness that might make it easier for people to learn to walk again after a stroke or spinal cord injury.

New animal models for hepatitis C could pave the way for a vaccine

July 19, 2017
They say that an ounce of prevention is worth a pound of cure. In the case of hepatitis C—a disease that affects nearly 71 million people worldwide, causing cirrhosis and liver cancer if left untreated—it might be worth ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

russell_russell
not rated yet Jul 15, 2014
If the exact same purpose is a "wavier of death", then the cell's functions are unabated.
What is primary function of a cancer cell? To replicate?
marounas
not rated yet Jul 16, 2014
Why are brain cells the only cells to stop the apoptotic process? Isn't a disadvantage?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.