One route to malaria drug resistance found

July 24, 2014
One route to malaria drug resistance found
Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious diseases including bacterial infections and tuberculosis. The research team defined the crystal structure of the PfHAD1 protein, above. When PfHAD1 is dysfunctional, the malaria parasite is resistant to fosmidomycin, an antibiotic in clinical trials for the treatment of malaria. Credit: Niraj H. Tolia

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious diseases including bacterial infections and tuberculosis.

The study appears July 24 in Nature Communications.

Many organisms, including the parasite that causes malaria, make a class of molecules called isoprenoids, which play multiple roles in keeping organisms healthy, whether plants, animals or bacteria. In malaria, the investigational drug fosmidomycin blocks isoprenoid synthesis, killing the parasite. But over time the drug often becomes less effective.

"In trials testing fosmidomycin, the malaria parasite returned in more than half the children by the end of the study," said senior author Audrey R. Odom, MD, PhD, assistant professor of pediatrics. "We wanted to know how the parasite is getting around the drug. How can it manage to live even though the drug is suppressing these compounds that are necessary for life?"

Fosmidomycin, an antibiotic, is being evaluated against malaria in phase 3 clinical trials in combination with other antimalarial drugs.

Using next-generation sequencing technology, the research team compared the genetics of malaria parasites that responded to the drug to the genetics of malaria parasites that were resistant to it. With this approach, Odom and her colleagues found mutations in a gene called PfHAD1. With dysfunctional PfHAD1, malaria is resistant to fosmidomycin.

"The PfHAD1 protein is completely unstudied," Odom said. "It's a member of a larger family of proteins, and there are almost no biological functions assigned to them."

In malaria parasites, Odom's team showed that the PfHAD1 protein normally slows down the synthesis of isoprenoids. In other words, when present, PfHAD1 is doing the same job as the drug, slowing isoprenoid manufacturing. Since isoprenoids are necessary for life, it's not clear why the organism would purposefully slow down isoprenoid production.

"We don't know why the protein puts the brakes on under normal conditions," Odom said. "Perhaps simply because it's an energetically expensive pathway. But loss of PfHAD1 releases the brakes, increasing the pathway's activity, so that even when the drug is there, it doesn't kill the cells."

Odom says isoprenoid synthesis is an attractive target not just for malaria but for and other bacterial infections because these organisms also rely on this same isoprenoid pathway. While people make isoprenoids, these vital compounds are manufactured entirely differently in animals compared with many infectious pathogens likely to cause disease.

Inhibiting isoprenoid manufacturing in malaria, bacteria or tuberculosis, for example, would in theory leave the human pathways safely alone. In people, perhaps the most well-known isoprenoid is cholesterol, with statin drugs famously inhibiting that manufacturing pathway.

Odom, who treats patients at St. Louis Children's Hospital, said she sees a handful of malaria cases each year, mostly in patients who have recently traveled to parts of the world where malaria is common. The parasite remains a massive global health problem, causing about 627,000 deaths in 2012 alone, according to the World Health Organization. Most deaths are in children under age 5.

Despite this public health burden, malaria is understudied in the lab because it is notoriously difficult to grow. It has a complex lifecycle that includes two-way transfers between mosquito and human and spans different forms in the human liver and red blood cells.

"The is difficult to work with in the lab; it's nearly impossible to replicate the lifecycle," Odom said. "That's why it was so exciting to be able to do this kind of study in , rather than in a typical model organism like yeast. This genetic study would not have been possible even five years ago because the gene sequencing technology was not there."

Explore further: Major breakthrough in quest for new malaria drugs

Related Stories

Major breakthrough in quest for new malaria drugs

July 17, 2014
Victorian scientists have made a major breakthrough in the race to find new drugs to fight malaria, one of the world's most devastating diseases.

Studying the metabolism of the malaria-causing parasite Plasmodium falciparum

March 19, 2014
(Medical Xpress)—Fighting malaria in today's world will require a new, targeted approach, and Virginia Tech researchers are out for blood.

GSK asks European regulator to OK malaria shot

July 24, 2014
(AP)—Pharma giant GSK said Thursday it is submitting its malaria vaccine for regulatory approval to the European Medicines Agency.

New compound blocks 'gatekeeper' enzyme to kill malaria

July 1, 2014
Melbourne researchers are homing in on a new target for malaria treatment, after developing a compound that blocks the action of a key 'gatekeeper' enzyme essential for malaria parasite survival.

Vaccine made from complex of two malaria proteins protects mice from lethal infection

June 23, 2014
An experimental vaccine designed to spur production of antibodies against a key malaria parasite protein, AMA1, was developed more than decade ago by scientists from the National Institute of Allergy and Infectious Diseases ...

Modified bone drug kills malaria parasite in mice

February 27, 2012
A chemically altered osteoporosis drug may be useful in fighting malaria, researchers report in a new study. Unlike similar compounds tested against other parasitic protozoa, the drug readily crosses into the red blood cells ...

Recommended for you

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

Large variety of microbial communities found to live along female reproductive tract

October 18, 2017
(Medical Xpress)—A large team of researchers from China (and one each from Norway and Denmark) has found that the female reproductive tract is host to a far richer microbial community than has been thought. In their paper ...

Study of what makes cells resistant to radiation could improve cancer treatments

October 18, 2017
A Johns Hopkins University biologist is part of a research team that has demonstrated a way to size up a cell's resistance to radiation, a step that could eventually help improve cancer treatments.

New approach helps rodents with spinal cord injury breathe on their own

October 17, 2017
One of the most severe consequences of spinal cord injury in the neck is losing the ability to control the diaphragm and breathe on one's own. Now, investigators show for the first time in laboratory models that two different ...

Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017
Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

New method to measure how drugs interact

October 17, 2017
Cancer, HIV and tuberculosis are among the many serious diseases that are frequently treated with combinations of three or more drugs, over months or even years. Developing the most effective therapies for such diseases requires ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.