Team rules out leading hypothesis for miscarriages, birth defects

July 3, 2014, Washington State University
Human chromosomes during metaphase. Credit: Steffen Dietzel/Wikipedia

Washington State University reproductive biologists have ruled out one of the leading thoughts on why older women have an increased risk of miscarriages and children with birth defects.

The 46-year-old "Production-Line Hypothesis" says that the first produced in a female's fetal stage tend to have better connections or "crossovers" between . The hypothesis also asserts that, as the woman ages and ovulates eggs produced later, her eggs will have more faulty chromosomes, leading to miscarriages and developmental abnormalities.

But after counting the actual chromosome crossovers in thousands of eggs, WSU researchers found those of eggs produced early in the were no different from those produced later.

"If the production-line hypothesis was true, you'd expect lots of abnormal cells and you would expect them all to be happening late," said Ross Rowsey, a doctoral candidate in WSU's Center for Reproductive Biology. "We do see a pretty high incidence of , but they're just as likely to be happening early as late."

Faulty chromosomes, in particular the incorrect number of chromosomes known as aneuploidy, account for more than one-third of human miscarriages and congenital , including Down Syndrome. Their frequency rises dramatically in .

"The age of the woman is probably the most important risk factor associated with any human genetic disease," said Terry Hassold, a WSU professor of and co-author with Rowsey and others of a paper on their findings in the American Journal of Human Genetics.

"It's an extraordinary complication to human reproduction," he said. "By the time a woman is in her 40s, it's likely the majority of her eggs don't have the right number of chromosomes. And if you don't have the right number of chromosomes, you'll either have a miscarriage or a congenital disability."

The production-line hypothesis was put forth in 1968 by Alan Henderson and Robert Edwards, winner of the Nobel Prize for his development of in-vitro fertilization. It has since become one of the most cited explanations for human aneuploidy.

To test the hypothesis, Rowsey looked at more than 8,000 eggs from 191 second-trimester fetal ovaries. The material came from elective abortions at San Francisco General Hospital and the University of Washington in accordance with the guidelines of the National Institutes of Health.

Rowsey treated eggs so proteins at chromosome crossovers would fluoresce, making dozens of glowing dots visible under a microscope. He then counted them and analyzed their distribution.

He saw a lot of variation within women and between women but no relationship to a woman's age.

"There have to be other factors involved," he said. "The abnormal crossovers can't be explaining all of it."

Rowsey and Hassold said problems could be occurring at one, two or all of three stages: as the crossovers are formed, in the long rest stage before ovulation, and as chromosomes divide during ovulation and fertilization.

Rowsey said he is particularly intrigued by the egg's rest stage, when its proteins are called upon to remain intact for what can be decades.

"I don't know a ton about protein stability," he said, "but it seems to me like a single protein sitting there for 40 years is highly unlikely. But studies from model organisms show that those proteins aren't replenished over time. I'm really interested to know what's going on in that time."

Explore further: BPA harms human reproduction by damaging chromosomes, disrupting egg development

Related Stories

BPA harms human reproduction by damaging chromosomes, disrupting egg development

September 24, 2012
A Washington State University researcher has found new evidence that the plastic additive BPA can disrupt women's reproductive systems, causing chromosome damage, miscarriages and birth defects.

Researchers confirm key feature of age-related miscarriages and birth defects

April 14, 2011
Washington State University researchers have confirmed a critical step in cell division that results in age-related miscarriages and birth defects, including Down syndrome.

Recommended for you

Importance of cell cycle and cellular senescence in the placenta discovered

October 15, 2018
Working with researchers from Stanford University and St. Anna Children's Cancer Research, researchers from Jürgen Pollheimer's laboratory at the Medical University of Vienna's Department of Obstetrics and Gynecology have ...

Team's study reveals hidden lives of medical biomarkers

October 12, 2018
What do medical biomarkers do on evenings and weekends, when they might be considered off the clock?

Researchers find a 'critical need' for whole genome sequencing of young cancer patients

October 12, 2018
St. Jude Children's Research Hospital has re-defined the gold standard for diagnostic testing of childhood cancer patients in the precision-medicine era and has implemented the testing for new cancer patients. The findings ...

Novel genetic study sheds new light on risk of heart attack

October 12, 2018
Loss of a protein that regulates mitochondrial function can greatly increase the risk of myocardial infarction (heart attack), Vanderbilt scientists reported Oct. 3 in the journal eLife.

Study: DNA websites cast broad net for identifying people

October 11, 2018
About 60 percent of the U.S. population with European heritage may be identifiable from their DNA by searching consumer websites, even if they've never made their own genetic information available, a study estimates.

First two papers based on studies using full set of data in the UK Biobank published

October 11, 2018
Two teams of researchers have independently published papers describing research conducted using the full set of data in the UK Biobank—both in the journal Nature. The first team comprised researchers from the U.K., Australia ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.