Ultrasound tracks odor representation in the brain

July 14, 2014, CNRS
On these images, the cerebral activation detected by ultrasound imaging is shown in red. During odor presentation, specific areas are activated in the olfactory bulb but not in the piriform cortex. © Mickael Tanter / Hirac Gurden[Sur ces images, l'activation cérébrale détectée par imagerie ultrasonore est visualisée en rouge. A la présentation d'une odeur donnée, des territoires spécifiques sont sollicités dans le bulbe olfactif mais pas dans le cortex piriforme. © Michaël Tanter / Hirac Gurden][Sur ces images, l'activation cérébrale détectée par imagerie ultrasonore est visualisée en rouge. A la présentation d'une odeur donnée, des territoires spécifiques sont sollicités dans le bulbe olfactif mais pas dans le cortex piriforme. Credit: Michaël Tanter / Hirac Gurden

A new ultrasound imaging technique has provided the first ever in vivo visualization of activity in the piriform cortex of rats during odor perception.. This deep-seated brain structure plays an important role in olfaction, and was inaccessible to functional imaging until now. This work also sheds new light on the still poorly known functioning of the olfactory system, and notably how information is processed in the brain. This study is the result of a collaboration between the team led by Mickael Tanter at the Institut Langevin (CNRS/INSERM/ESPCI ParisTech/UPMC/Université Paris Diderot) and that led by Hirac Gurden in the Laboratoire Imagerie et Modélisation en Neurobiologie et Cancérologie (CNRS/Université Paris-Sud/Université Paris Diderot). Their findings are published in NeuroImage dated July 15, 2014.

How can the perception of the senses help represent the external environment? How, for example, does the brain process food- or perfume-related olfactory data? Although the organization of the is well known - it is similar in organisms ranging from insects to mammals - its functioning remains unclear. To answer these questions, the scientists focused on the two brain structures that act as major olfactory relays: the and the piriform cortex. In the rat, the olfactory bulb is located between the eyes, just behind the nasal bone. The piriform cortex, meanwhile, is deep-seated in the brain of rodents, which made it impossible to obtain any functional images in a living animal until now.

Yet the neurofunctional ultrasound imaging technique developed by Mickael Tanter's team, called fUS (functional Ultrasound), allows the monitoring of neuronal activity in the piriform cortex. It is based on the transmission of ultrasonic plane waves into the brain tissue. After data processing, the echoes returned by the structures crossed by these waves can provide images with unequalled spatial and temporal resolution: 80 micrometers and a few tens of milliseconds. The contrast on these images is due to variations in the brain's blood flow. Indeed, the activity of nerve cells requires an input of energy: it is therefore coupled to an influx of blood into the zone concerned. By recording volume variations in the blood vessels irrigating the different brain structures, it is therefore possible to determine the location of activated neurons.

Several imaging techniques, such as MRI, are already based on the link between blood volume and . But fUS offers advantages in terms of cost, ease of use and resolution. Furthermore, it provides easier access to the deepest structures that are often located several centimeters beneath the cranium.

The recordings performed by Hirac Gurden's team using this technique made it possible to observe the spatial distribution of activity within the olfactory bulb. When an odor was perceived, blood volume increased in clearly defined areas: each odor thus corresponded to a specific pattern of activated neurons. In addition to these findings, and for the first time, the images revealed an absence of spatial distribution in the piriform cortex. At this level, two different odors triggered the same activation throughout the region.

The cellular mechanisms responsible for the disappearance of a spatial signature are not yet clearly defined, but these findings lead to the formulation of several hypotheses. The piriform cortex could be a structure that serves not only to process olfactory stimuli but rather to integrate and memorize different types of data. By making abstraction of the strict odor-induced patterns, it would be possible to make associations and achieve a global concept. For example, based on the perception of the hundreds of odorant molecules found in coffee, the piriform cortex would be able to recognize a single odor, that of coffee.

This work opens new perspectives for both imaging and neurobiology. The researchers will now be focusing on the effects of learning on cortical activity in order to elucidate its role and the specificities of the olfactory system.

Explore further: Map of brain connections provides insight into olfactory system

More information: "Functional ultrasound imaging reveals different odor-evoked patterns of vascular activity in the main olfactory bulb and the anterior piriform cortex." B.F. Osmanski, C. Martin, G. Montaldo, P. Lanièce, F. Pain, M. Tanter, H.. Gurden. NeuroImage 2014. 95C:176-184. DOI : dx.doi.org/10.1016/j.neuroimage.2014.03.054

Related Stories

Map of brain connections provides insight into olfactory system

May 16, 2014
The processing of sensory information in the brain involves a complex network of neural connections specific to each type of sensory input. Much is known about the neural wiring associated with most senses, but the deeper ...

With training, a failing sense of smell can be reversed

November 20, 2011
In a new study scientists at NYU Langone Medical Center have shown that the sense of smell can be improved. The new findings, published online November 20, 2011, in Nature Neuroscience, suggest possible ways to reverse the ...

Neuronal filters for broadband information transmission in the brain

November 21, 2011
(Medical Xpress) -- As in broadband information technology, the nervous system transmits different messages simultaneously from one brain region to others. But how are messages retrieved at the other end without confusing ...

Research reveals first glimpse of brain circuit that helps experience to shape perception

March 2, 2014
Odors have a way of connecting us with moments buried deep in our past. Maybe it is a whiff of your grandmother's perfume that transports you back decades. With that single breath, you are suddenly in her living room, listening ...

Recommended for you

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Brain zaps may help curb tics of Tourette syndrome

January 16, 2018
Electric zaps can help rewire the brains of Tourette syndrome patients, effectively reducing their uncontrollable vocal and motor tics, a new study shows.

A 'touching sight': How babies' brains process touch builds foundations for learning

January 16, 2018
Touch is the first of the five senses to develop, yet scientists know far less about the baby's brain response to touch than to, say, the sight of mom's face, or the sound of her voice.

Researchers identify protein involved in cocaine addiction

January 16, 2018
Mount Sinai researchers have identified a protein produced by the immune system—granulocyte-colony stimulating factor (G-CSF)—that could be responsible for the development of cocaine addiction.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.