Flexing the brain: Scientists discover why learning tasks can be difficult

August 27, 2014, Carnegie Mellon University
Scientists plug into a learning brain
Scientists mapped neural activity patterns (white dots) in a learning brain. They found that learning occurs faster when it only requires existing patterns of activity (red box) than when it needs to use patterns outside of the red box. Credit: Batista lab, University of Pittsburgh

Learning a new skill is easier when it is related to an ability we already have. For example, a trained pianist can learn a new melody easier than learning how to hit a tennis serve.

Scientists from the Center for the Neural Basis of Cognition (CNBC) – a joint program between Carnegie Mellon University and the University of Pittsburgh – have discovered a fundamental constraint in the brain that may explain why this happens. Published as the cover story in the August 28, 2014, issue of Nature, they found for the first time that there are limitations on how adaptable the brain is during learning and that these restrictions are a key determinant for whether a new skill will be easy or difficult to learn. Understanding the ways in which the brain's activity can be "flexed" during learning could eventually be used to develop better treatments for stroke and other brain injuries.

Lead author Patrick T. Sadtler, a Ph.D. candidate in Pitt's Department of Bioengineering, compared the study's findings to cooking.

"Suppose you have flour, sugar, baking soda, eggs, salt and milk. You can combine them to make different items—bread, pancakes and cookies—but it would be difficult to make hamburger patties with the existing ingredients," Sadtler said. "We found that the brain works in a similar way during learning. We found that subjects were able to more readily recombine familiar in new ways relative to creating entirely novel patterns."

For the study, the research team trained animals to use a brain-computer interface (BCI), similar to ones that have shown recent promise in clinical trials for assisting quadriplegics and amputees.

Credit: Carnegie Mellon University

"This evolving technology is a powerful tool for brain research," said Daofen Chen, program director at the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH), which supported this research. "It helps scientists study the dynamics of brain circuits that may explain the of learning."

The researchers recorded in the subject's motor cortex and directed the recordings into a computer, which translated the activity into movement of a cursor on the computer screen. This technique allowed the team to specify the activity patterns that would move the cursor. The test subjects' goal was to move the cursor to targets on the screen, which required them to generate the patterns of neural activity that the experimenters had requested. If the subjects could move the cursor well, that meant that they had learned to generate the neural activity pattern that the researchers had specified.

The results showed that the subjects learned to generate some neural activity patterns more easily than others, since they only sometimes achieved accurate cursor movements. The harder-to-learn patterns were different from any of the pre-existing patterns, whereas the easier-to-learn patterns were combinations of pre-existing brain patterns. Because the existing brain patterns likely reflect how the neurons are interconnected, the results suggest that the connectivity among neurons shapes learning.

"We wanted to study how the changes its activity when you learn, and also how its activity cannot change. Cognitive flexibility has a limit—and we wanted to find out what that limit looks like in terms of neurons," said Aaron P. Batista, assistant professor of bioengineering at Pitt.

Byron M. Yu, assistant professor of electrical and computer engineering and biomedical engineering at Carnegie Mellon, believes this work demonstrates the utility of BCI for basic scientific studies that will eventually impact people's lives.

"These findings could be the basis for novel rehabilitation procedures for the many neural disorders that are characterized by improper neural activity," Yu said. "Restoring function might require a person to generate a new pattern of neural activity. We could use techniques similar to what were used in this study to coach patients to generate proper neural activity."

Explore further: Neuroscience and big data: How to find simplicity in the brain

More information: Neural constraints on learning , Nature, DOI: 10.1038/nature13665

Related Stories

Neuroscience and big data: How to find simplicity in the brain

August 24, 2014
Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity ...

Motor cortex shown to play active role in learning movement patterns

May 4, 2014
Skilled motor movements of the sort tennis players employ while serving a tennis ball or pianists use in playing a concerto, require precise interactions between the motor cortex and the rest of the brain. Neuroscientists ...

Researchers find people learn to use brain-computer interfaces the same way as other motor skills

June 11, 2013
(Medical Xpress)—Researchers at the University of Washington have found that people who learn to control an object on a computer screen using only their thoughts, do so in ways that are very similar to the ways people learn ...

Neuroscientists show how neurons respond to sequences of familiar objects

August 24, 2014
The world grows increasingly more chaotic year after year, and our brains are constantly bombarded with images. A new study from Center for the Neural Basis of Cognition (CNBC), a joint project between Carnegie Mellon University ...

Bypass commands from the brain to legs through a computer

August 14, 2014
Gait disturbance in individuals with spinal cord injury is attributed to the interruption of neural pathways from brain to the spinal locomotor center, whereas neural circuits locate below and above the lesion maintain most ...

Brain: Balancing old and new skills

December 9, 2013
To learn new motor skills, the brain must be plastic: able to rapidly change the strengths of connections between neurons, forming new patterns that accomplish a particular task. However, if the brain were too plastic, previously ...

Recommended for you

Research reveals atomic-level changes in ALS-linked protein

January 18, 2018
For the first time, researchers have described atom-by-atom changes in a family of proteins linked to amyotrophic lateral sclerosis (ALS), a group of brain disorders known as frontotemporal dementia and degenerative diseases ...

Fragile X finding shows normal neurons that interact poorly

January 18, 2018
Neurons in mice afflicted with the genetic defect that causes Fragile X syndrome (FXS) appear similar to those in healthy mice, but these neurons fail to interact normally, resulting in the long-known cognitive impairments, ...

How your brain remembers what you had for dinner last night

January 17, 2018
Confirming earlier computational models, researchers at University of California San Diego and UC San Diego School of Medicine, with colleagues in Arizona and Louisiana, report that episodic memories are encoded in the hippocampus ...

Recording a thought's fleeting trip through the brain

January 17, 2018
University of California, Berkeley neuroscientists have tracked the progress of a thought through the brain, showing clearly how the prefrontal cortex at the front of the brain coordinates activity to help us act in response ...

Midbrain 'start neurons' control whether we walk or run

January 17, 2018
Locomotion comprises the most fundamental movements we perform. It is a complex sequence from initiating the first step, to stopping when we reach our goal. At the same time, locomotion is executed at different speeds to ...

Miles Davis is not Mozart: The brains of jazz and classical pianists work differently

January 16, 2018
Keith Jarret, world-famous jazz pianist, once answered in an interview when asked if he would ever be interested in doing a concert where he would play both jazz and classical music: "No, that's hilarious. [...] It's like ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Bob Osaka
not rated yet Aug 27, 2014
The types of learning abilities in this article relate to muscle memory. Cognitive abilities will require much more research and looking beyond the motor cortex.
gralp
not rated yet Aug 28, 2014
"We found that subjects were able to more readily recombine familiar activity patterns in new ways relative to creating entirely novel patterns."

Why am I not surprised? Probably because researchers, like their own subjects, have difficulty creating new patterns, and instead of thinking out of the box set for checking the expected in hope of finding a hole. Not finding one is not an excuse for publishing, unfortunately.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.