The future of regenerative medicine

August 25, 2014, Monash University
The future of regenerative medicine
An axolotl salamander, from the only axolotl facility in Australia based at Monash

(Medical Xpress)—If regenerative medicine is to become a reality, research efforts must now focus on the environment that stem cells need to grow and transform, a review has found.

The review was published in Nature Medicine by leading researchers in , Professor Nadia Rosenthal from the Australian Regenerative Medicine Institute (ARMI) at Monash, and Professor Stuart Forbes from the MRC Centre for Regenerative Medicine at the University of Edinburgh.

Professor Rosenthal likens the approach of regenerative medicine to sowing a seed that requires healthy soil to grow and develop.

"In stem cell-based therapies, a body's damaged tissue is the soil, and it is imperative that this tissue is prepared and ready for the stem cell seed," Professor Rosenthal said.

"The field is now focusing attention on the body's to tissue damage. Although a perturbed immune reaction can lead to detrimental inflammation and scarring, the immune system also controls inflammation, influences stem cells and stimulates the matrix micro-environment to prepare this soil.

"We see radically different immune profiles in the injured tissues of highly regenerative animals such as fish and salamanders, as well as in mammalian embryos. Retaining a balanced immune response is imperative to allow regenerative therapies to meet their full potential in adult tissues."

The review described recent progress made in understanding stem cells and their ability to treat lost or damaged tissues by, 'seeding' injured tissue.

As degenerative diseases are a significant burden in terms of morbidity, mortality and healthcare costs, Professor Rosenthal said a more integrated approach could bridge the many gaps in current knowledge.

"Advances in our basic understanding of regenerative processes could make a major difference to the treatment of many degenerative illnesses," Professor Rosenthal said.

"Whilst there have been successes in the lab, effective therapies are yet to emerge. We believe that insights from studying tissue restoration in more highly regenerative animals, or in early mammalian life, has the potential to change the face of modern medicine.

"The use of stem cells in bone marrow transplants, to replace or restore normal blood function, is a classic example of regenerative medicine, but we need to know more about the local crosstalk between , the extracellular environment and the immune response in solid tissue damage to successfully treat a range of other diseases."

Explore further: Novel methods may help stem cells survive transplantation into damaged tissues

Related Stories

Novel methods may help stem cells survive transplantation into damaged tissues

July 22, 2014
Stem cells offer much promise for treating damaged organs and tissues, but with current transplantation approaches stem cell survival is poor, limiting their effectiveness. New methods are being developed and tested to improve ...

Not all stem cells are equally efficient for use in regenerative medicine

January 9, 2013
Scientists at the University of Granada and Alcalá de Henares University have found out that not all isolated stem cells are equally valid in regenerative medicine and tissue engineering. In a paper recently published in ...

Fat-derived stem cells hold potential for regenerative medicine

November 9, 2012
(Medical Xpress)—As researchers work on reconfiguring cells to take on new regenerative properties, a new review from Penn Medicine plastic surgeons sheds additional light on the potential power of adipose-derived stem ...

An attractive solution for heart repair

August 15, 2014
Stem cell therapy is a promising option for repairing heart tissue damaged by heart attack. However, the main obstacle to cardiac stem cell therapy also happens to be pretty difficult to get around – and that's the fact ...

Bacteria's hidden skill could pave way for stem cell treatments

January 17, 2013
A discovery about the way in which bugs spread throughout the body could help to develop stem cell treatments.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.