Novel study maps infant brain growth in first three months of life using MRI technology

August 11, 2014, University of California - San Diego
Credit: Photo by Chris Meyer, Indiana University

A recent study conducted by researchers at the University of California, San Diego School of Medicine and the University of Hawaii demonstrates a new approach to measuring early brain development of infants, resulting in more accurate whole brain growth charts and providing the first estimates for growth trajectories of subcortical areas during the first three months after birth. Assessing the size, asymmetry and rate of growth of different brain regions could be key in detecting and treating the earliest signs of neurodevelopmental disorders, such as autism or perinatal brain injury.

The study will be published in JAMA Neurology on August 11.

For the first time, researchers used magnetic resonance imaging (MRI) of the newborn to calculate the volume of multiple brain regions and to map out regional growth trajectories during the infant's first 90 days of life. The study followed the brain growth of full term and premature babies with no neurological or major health issues.

"A better understanding of when and how arise in the postnatal period may help assist in therapeutic development, while being able to quantify related changes in structure size would likely facilitate monitoring response to therapeutic intervention. Early intervention during a period of high neuroplasticity could mitigate the severity of the disorders in later years," said Dominic Holland, PhD, first author of the study and researcher in the Department of Neurosciences at UC San Diego School of Medicine.

For more than two centuries, clinicians have tracked by measuring the outside of the infant's head with a measuring tape. The results are then plotted on a percentile chart to indicate if normal growth patterns exist. While the measurement is helpful for observing growth, it does not reveal if the individual structures within the brain are developing normally.

On average, researchers found the newborn brain grows one percent each day immediately following birth but slows to 0.4 percent per day by three months. In general for both sexes, the cerebellum, which is involved in motor control, grew at the highest rate, more than doubling volume in 90 days. The hippocampus grew at the slowest rate, increasing in volume by only 47 percent in 90 days, suggesting that the development of episodic memory is not as important at this stage of life.

"We found that being born a week premature, for example, resulted in a brain four to five percent smaller than expected for a full term baby. The brains of actually grow faster than those of term-born babies, but that's because they're effectively younger – and younger means faster growth," said Holland. "At 90 days post-delivery, however, premature brains were still two percent smaller. The brain's rapid growth rates near birth suggest that inducing early labor, if not clinically warranted, may have a negative effect on the infant's neurodevelopment."

The study also found that many asymmetries in the brain are already established in the early postnatal period, including the right hippocampus being larger than the left, which historically, has been suggested to occur in the early adolescent years. Cerebral asymmetry is associated with functions such as dexterity and language abilities.

Next steps involve continuing to make advances in the application of different MRI modalities to examine the newborn brain. MRI provides high quality images of different types of tissue and does not involve radiation, like computed tomography (CT). Future research will investigate how brain structure sizes at birth and subsequent growth rates are altered as a result of alcohol and drug consumption during pregnancy.

"Our findings give us a deeper understanding of the relationship between brain structure and function when both are developing rapidly during the most dynamic postnatal growth phase for the human brain," said Holland.

Explore further: MRI shows brain abnormalities in late preterm infants

Related Stories

MRI shows brain abnormalities in late preterm infants

June 10, 2014
Babies born 32 to 36 weeks into gestation may have smaller brains and other brain abnormalities that could lead to long-term developmental problems, according to a new study published online in the journal Radiology.

Does a bigger brain make for a smarter child in babies born prematurely?

October 12, 2011
New research suggests the growth rate of the brain's cerebral cortex in babies born prematurely may predict how well they are able to think, speak, plan and pay attention later in childhood. The research is published in the ...

Brain mapping study to improve outcomes for preterm infants

October 22, 2013
A University of Queensland study into how premature babies' brains develop will lead to the earlier diagnosis of brain impairment in preterm children.

Preterm children's brains can catch up years later

July 29, 2014
There's some good news for parents of preterm babies – latest research from the University of Adelaide shows that by the time they become teenagers, the brains of many preterm children can perform almost as well as those ...

Bigger babies have bigger brains as teens: study

November 19, 2012
(HealthDay)—Newborns who weigh around 9 pounds or more at birth tend to have bigger brains as teens than those who weigh less at birth, a new study finds.

Even mild traumatic brain injury may cause brain damage

July 16, 2014
Even mild traumatic brain injury may cause brain damage and thinking and memory problems, according to a study published in the July 16, 2014, online issue of Neurology, the medical journal of the American Academy of Neurology.

Recommended for you

Research shows signalling mechanism in the brain shapes social aggression

October 19, 2018
Duke-NUS researchers have discovered that a growth factor protein, called brain-derived neurotrophic factor (BDNF), and its receptor, tropomyosin receptor kinase B (TrkB) affects social dominance in mice. The research has ...

Good spatial memory? You're likely to be good at identifying smells too

October 19, 2018
People who have better spatial memory are also better at identifying odors, according to a study published this week in Nature Communications. The study builds on a recent theory that the main reason that a sense of smell ...

How clutch molecules enable neuron migration

October 19, 2018
The brain can discriminate over 1 trillion odors. Once entering the nose, odor-related molecules activate olfactory neurons. Neuron signals first accumulate at the olfactory bulb before being passed on to activate the appropriate ...

Scientists discover the region of the brain that registers excitement over a preferred food option

October 19, 2018
At holiday buffets and potlucks, people make quick calculations about which dishes to try and how much to take of each. Johns Hopkins University neuroscientists have found a brain region that appears to be strongly connected ...

Gene plays critical role in noise-induced deafness

October 19, 2018
In experiments using mice, a team of UC San Francisco researchers has discovered a gene that plays an essential role in noise-induced deafness. Remarkably, by administering an experimental chemical—identified in a separate ...

Brain cells called astrocytes have unexpected role in brain 'plasticity'

October 18, 2018
When we're born, our brains have a great deal of flexibility. Having this flexibility to grow and change gives the immature brain the ability to adapt to new experiences and organize its interconnecting web of neural circuits. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.