Researchers explore new possibilities for the treatment of epilepsy

October 1, 2014
This image depicts a section of a brain a week after an initial seizure. In such cases, microglial cells, stained green, sometimes engulf and attack neurons, stained red. Two drugs currently being tested in an ISU biomedical sciences lab may silence or control the microglial cells and prevent spontaneous seizures. Photo courtesy of Thimmasettappa Thippeswamy

Ongoing research at Iowa State University is investigating the connection between initial seizures and the onset of epilepsy later in life.

Nearly one in 10 Americans will experience an initial , but only 3 percent of those who experience a seizure will go on to develop epilepsy, according to the Centers for Disease Control and Prevention. Thimmasettappa Thippeswamy, a professor of biomedical sciences in the ISU College of Veterinary Medicine, is studying why some who suffer a seizure develop the disease and others don't.

A related question Thippeswamy is investigating is why a small fraction that develops the disorder doesn't respond to the most common treatments for epilepsy.

Thippeswamy said medical science has a poor understanding of why only some people who have a seizure develop epilepsy – sometimes years after the initial seizure – and why conventional medications don't always help.

His lab members are tracking long-term brain activity in rodents after experimentally induced seizures. They're looking closely at how two experimental drugs work in concert with one another to gain a better understanding of epileptogensis, or the process that leads to the development of epilepsy. Thippeswamy said gaining a better understanding of epileptogensis may hold the key to halting the progression of the disease.

They're using radiotelemetry to study effects of the drugs in real time. The research has offered new insight into how seizures affect the behavior of and glial cells, critical brain cells that process and relay information, in the parts of the brain that govern learning and memory.

Thippeswamy said seizures can stimulate the birth of new neurons, but the new cells don't always integrate well with the existing neurons. The two drugs Thippeswamy is studying may be able to make the transition easier for new neurons.

"When neurons don't work in a coordinated manner after the first seizure, they send a 'wrong message' to the glial cells," Thippeswamy said. "The will turn into bad guys, and may pick on bystanders such as . We're investigating whether the drugs can turn these bad guys into good guys."

He also said antioxidants, such as those found in natural food products like grapes or greens, may act in a similar way as the experimental drugs, since some antioxidants affect the same targets in the brain.

Thippeswamy said his research also has implications beyond classical ; for example, he said it could impact those who suffer from traumatic brain injuries, such as veterans or athletes competing in contact sports.

Explore further: Breakthrough in detecting early onset of refractory epilepsy in children

Related Stories

Anti-epilepsy drugs can cause inflammations

December 19, 2013

Physicians at the Ruhr-Universität Bochum (RUB) have been investigating if established anti-epilepsy drugs have anti-inflammatory or pro-inflammatory properties – an effect for which these pharmaceutical agents are not ...

Fish oil may help curb seizure frequency in epilepsy

September 8, 2014

Low doses of fish oil may help to curb the frequency of epileptic seizures when drug treatment no longer works, suggests a small study published online in the Journal of Neurology Neurosurgery & Psychiatry.

Task force issues improved definition for epilepsy

May 6, 2014

A UCLA neurosurgeon was part of a prestigious task force that has created a new clinical definition for epilepsy. The new interpretation, which updates a definition that had been in use for nearly a decade, broadens the scope ...

Recommended for you

Study finds gray matter density increases during adolescence

May 26, 2017

For years, the common narrative in human developmental neuroimaging has been that gray matter in the brain - the tissue found in regions of the brain responsible for muscle control, sensory perception such as seeing and hearing, ...

Researchers identify brain network organization changes

May 25, 2017

As children age into adolescence and on into young adulthood, they show dramatic improvements in their ability to control impulses, stay organized, and make decisions. Those executive functions of the brain are key factors ...

Scientists demonstrate the existence of 'social neurons'

May 25, 2017

The existence of new "social" neurons has just been demonstrated by scientists from the Institut de neurosciences des systèmes (Aix-Marseille University / INSERM), the Laboratoire de psychologie sociale et cognitive (Université ...

How fear can develop out of others' traumas

May 25, 2017

What happens in the brain when we see other people experiencing a trauma or being subjected to pain? Well, the same regions that are involved when we feel pain ourselves are also activated when we observe other people who ...

Babies' slow brain waves could predict problems

May 25, 2017

The brain waves of healthy newborns – which appear more abnormal than those of severe stroke victims – could be used to accurately predict which babies will have neurodevelopmental disorders.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.