Researchers explore new possibilities for the treatment of epilepsy

October 1, 2014, Iowa State University
This image depicts a section of a brain a week after an initial seizure. In such cases, microglial cells, stained green, sometimes engulf and attack neurons, stained red. Two drugs currently being tested in an ISU biomedical sciences lab may silence or control the microglial cells and prevent spontaneous seizures. Photo courtesy of Thimmasettappa Thippeswamy

Ongoing research at Iowa State University is investigating the connection between initial seizures and the onset of epilepsy later in life.

Nearly one in 10 Americans will experience an initial , but only 3 percent of those who experience a seizure will go on to develop epilepsy, according to the Centers for Disease Control and Prevention. Thimmasettappa Thippeswamy, a professor of biomedical sciences in the ISU College of Veterinary Medicine, is studying why some who suffer a seizure develop the disease and others don't.

A related question Thippeswamy is investigating is why a small fraction that develops the disorder doesn't respond to the most common treatments for epilepsy.

Thippeswamy said medical science has a poor understanding of why only some people who have a seizure develop epilepsy – sometimes years after the initial seizure – and why conventional medications don't always help.

His lab members are tracking long-term brain activity in rodents after experimentally induced seizures. They're looking closely at how two experimental drugs work in concert with one another to gain a better understanding of epileptogensis, or the process that leads to the development of epilepsy. Thippeswamy said gaining a better understanding of epileptogensis may hold the key to halting the progression of the disease.

They're using radiotelemetry to study effects of the drugs in real time. The research has offered new insight into how seizures affect the behavior of and glial cells, critical brain cells that process and relay information, in the parts of the brain that govern learning and memory.

Thippeswamy said seizures can stimulate the birth of new neurons, but the new cells don't always integrate well with the existing neurons. The two drugs Thippeswamy is studying may be able to make the transition easier for new neurons.

"When neurons don't work in a coordinated manner after the first seizure, they send a 'wrong message' to the glial cells," Thippeswamy said. "The will turn into bad guys, and may pick on bystanders such as . We're investigating whether the drugs can turn these bad guys into good guys."

He also said antioxidants, such as those found in natural food products like grapes or greens, may act in a similar way as the experimental drugs, since some antioxidants affect the same targets in the brain.

Thippeswamy said his research also has implications beyond classical ; for example, he said it could impact those who suffer from traumatic brain injuries, such as veterans or athletes competing in contact sports.

Explore further: Breakthrough in detecting early onset of refractory epilepsy in children

Related Stories

Breakthrough in detecting early onset of refractory epilepsy in children

September 15, 2014
65 million people around the world today suffer from epilepsy, a condition of the brain that may trigger an uncontrollable seizure at any time, often for no known reason. A seizure is a disruption of the electrical communication ...

Brain study uncovers vital clue in bid to beat epilepsy

September 3, 2013
People with epilepsy could be helped by new research into the way a key molecule controls brain activity during a seizure.

Anti-epilepsy drugs can cause inflammations

December 19, 2013
Physicians at the Ruhr-Universität Bochum (RUB) have been investigating if established anti-epilepsy drugs have anti-inflammatory or pro-inflammatory properties – an effect for which these pharmaceutical agents are not ...

Fish oil may help curb seizure frequency in epilepsy

September 8, 2014
Low doses of fish oil may help to curb the frequency of epileptic seizures when drug treatment no longer works, suggests a small study published online in the Journal of Neurology Neurosurgery & Psychiatry.

Task force issues improved definition for epilepsy

May 6, 2014
A UCLA neurosurgeon was part of a prestigious task force that has created a new clinical definition for epilepsy. The new interpretation, which updates a definition that had been in use for nearly a decade, broadens the scope ...

Recommended for you

Brain activity linked to stress changes chemical codes

April 24, 2018
Five years ago, a team of University of California San Diego neurobiologists published surprising findings describing how rats' brain cells adopted new chemical codes when subjected to significant changes in natural light ...

Scientists develop new method that uses light to manage neuropathic pain in mice

April 24, 2018
For patients with neuropathic pain, a chronic condition affecting 7 to 8 percent of the European population, extreme pain and sensitivity are a daily reality. There is currently no effective treatment. Scientists from EMBL ...

Animal cyborg—behavioral control by activating 'toy craving' circuit

April 24, 2018
Children love to get toys from parents as presents. This craving for objects also underlies object hoarding disorders and shopping addiction. However, the biological causes of object pursuit have remained unknown. Part of ...

In Huntington's disease, heart problems reflect broader effects of abnormal protein

April 24, 2018
Researchers investigating a key signaling protein in Huntington's disease describe deleterious effects on heart function, going beyond the disease's devastating neurological impact. By adjusting protein levels affecting an ...

Heading—not collisions—cognitively impairs players

April 24, 2018
Worse cognitive function in soccer players stems mainly from frequent ball heading rather than unintentional head impacts due to collisions, researchers at Albert Einstein College of Medicine have found. The findings suggest ...

Imagined and actual movements are controlled by the brain in the same way

April 24, 2018
A new study from Karolinska Institutet in Sweden shows that imagined movements can change our perception in the same way as real, executed movements do. The research, which is presented in the scientific journal Nature Communications, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.