The specific receptor targeted by naltrexone to enhance diabetic wound closure is OGFr

October 10, 2014, Society for Experimental Biology and Medicine

A major complication associated with diabetes is delayed cell replication in epithelium and skin. Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have reported the presence and function of the opioid growth factor (OGF) and its nuclear-associated receptor (OGFr) in skin. OGF, an inhibitory growth factor, chemically termed [Met5]-enkephalin, can be upregulated in diabetes leading to depressed cell proliferation. Topical naltrexone, a general opioid antagonist, stimulates cell replication but the specific ligand - opioid receptor pathway was previously unknown. Using rat auricular fibroblasts, and NIH 3T3 fibroblasts, selective antagonists and specific ligands for mu, delta, and kappa opioid receptors were shown to have no acceleratory effect on cell proliferation. Molecular knockdown of receptors using siRNAs demonstrated that only when the OGFr receptor expression was diminished did naltrexone become ineffective. In vivo studies using a diabetic rat model of full thickness cutaneous wounds revealed that topical application of selective antagonists (i.e., nalmefene, naltrindole, CTOP) for classical opioid receptors had no effect on wound closure.

These findings, reported in the October 2014 issue of Experimental Biology and Medicine, demonstrate that the specific ligand – receptor pathway mediated by naltrexone in the process of enhanced is the OGF-OGFr regulatory pathway.

Professor Patricia McLaughlin, senior author of this study, said "These findings show conclusively that the inhibitory factor OGF, and its receptor OGFr, play an integral role in maintaining the homeostasis of cell replication, and that blockade of their interfacing directly influence diabetic ". Dr. McLaughlin served as the thesis advisor for Jessica Immonen, the first author of the study who is now an Assistant Professor at Rocky Mountain University of Health Professions. Also co-authoring the article is Dr. Ian Zagon, Distinguished Professor of Neural and Behavioral Sciences at the Pennsylvania State University College of Medicine.

This information will support clinical trials on topical naltrexone therapy for complications in wound healing associated with diabetes, and will also encourage the design of more specific OGFr antagonists that can be used clinically to enhance closure of epithelial, surgical, or full-thickness coetaneous wounds in normal or diabetic individuals. Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "These important studies by Dr. McLaughlin and colleagues suggest that naltrexone will be able to improve skin repair in patients with impaired wound healing capability such as in diabetics."

Explore further: Successful treatment of triple negative breast cancer by modulation of the OGF-OGFr axis

More information: Selective blockade of the OGF–OGFr pathway by naltrexone accelerates fibroblast proliferation and wound healing, Published online before print July 16, 2014, DOI: 10.1177/1535370214543061

Related Stories

Successful treatment of triple negative breast cancer by modulation of the OGF-OGFr axis

August 9, 2013
Researchers at The Pennsylvania State University College of Medicine, led by Dr. Ian S. Zagon, have discovered that a novel biological pathway, the OGF-OGFr axis, can be modulated in human triple-negative breast cancer cells ...

A breakthrough in understanding the biology and treatment of ovarian cancer

February 21, 2012
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the presence and integrity of the opioid growth factor receptor (OGFr), which mediates the inhibitory action ...

Low dose naltrexone (LDN): Harnessing the body's own chemistry to treat human ovarian cancer

July 12, 2011
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that a low dose of the opioid antagonist naltrexone (LDN) has an extraordinarily potent antitumor effect on human ...

Low-dose naltrexone (LDN): Tricking the body to heal itself

September 2, 2011
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered the mechanism by which a low dose of the opioid antagonist naltrexone (LDN), an agent used clinically (off-label) ...

Recommended for you

Zombie cells found in brains of mice prior to cognitive loss

September 19, 2018
Zombie cells are the ones that can't die but are equally unable to perform the functions of a normal cell. These zombie, or senescent, cells are implicated in a number of age-related diseases. And with a new letter in Nature, ...

Synthetic sandalwood found to prolong human hair growth

September 19, 2018
A team of researchers led by Ralf Paus of the University of Manchester has found that applying sandalwood to the scalp can prolong human hair growth. In their paper published in the journal Nature Communications, the group ...

Separated entry and exit doors for calcium keep energy production smooth in the powerhouses of heart cells

September 18, 2018
Stress demands the heart to work harder and faster. To keep pace, the muscle must make its fuel at an accelerated rate. Bursts of calcium entering mitochondria—the cell's powerhouses—normally help control energy output, ...

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018
New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes—the one-of-a-kind microbial communities that live in our gastrointestinal tracts—to ...

A new defender for your sense of smell

September 18, 2018
New research from the Monell Center increases understanding of a mysterious sensory cell located in the olfactory epithelium, the patch of nasal tissue that contains odor-detecting olfactory receptor cells. The findings suggest ...

Small molecule plays big role in weaker bones as we age

September 18, 2018
With age, expression of a small molecule that can silence others goes way up while a key signaling molecule that helps stem cells make healthy bone goes down, scientists report.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.