Medical research

A critical factor for wound healing

The p53 family of transcription factors (p63 and p73) plays critical roles in keratinocyte (skin cell) function.

Medical research

Pilot study finds collagen to be effective in wound closure

Collagen powder is just as effective in managing skin biopsy wounds as primary closure with non-absorbable sutures, according to a first-of-its-kind study published in the Journal of Drugs in Dermatology by a team of physician ...

Oncology & Cancer

A new way to predict complications after larynx cancer surgery

A technique that illuminates blood flow during surgery predicted which head and neck cancer patients were likely to have issues with wound healing. It could enable surgeons to make adjustments during surgery or recovery to ...

Diabetes

Mechanism of impaired wound healing in diabetes identified

Researchers at Karolinska Institutet in Sweden have identified a mechanism that can explain the impaired wound healing in diabetes which can lead to diabetic foot ulcers. The study is published in the scientific journal Proceedings ...

Medical research

Mobile bedside bioprinter can heal wounds

Imagine a day when a bioprinter filled with a patient's own cells can be wheeled right to the bedside to treat large wounds or burns by printing skin, layer by layer, to begin the healing process. That day is not far off.

page 1 from 21

Wound healing

Wound healing, or wound repair, is an intricate process in which the skin (or some other organ) repairs itself after injury. In normal skin, the epidermis (outermost layer) and dermis (inner or deeper layer) exists in a steady-stated equilibrium, forming a protective barrier against the external environment. Once the protective barrier is broken, the normal (physiologic) process of wound healing is immediately set in motion. The classic model of wound healing is divided into three or four sequential, yet overlapping, phases: (1) hemostasis (not considered a phase by some authors), (2) inflammatory, (3) proliferative and (4) remodeling.

Upon injury to the skin, a set of complex biochemical events takes place in a closely orchestrated cascade to repair the damage. Within minutes post-injury, platelets (thrombocytes) aggregate at the injury site to form a fibrin clot. This clot acts to control active bleeding (hemostasis).

In the inflammatory phase, bacteria and debris are phagocytized and removed, and factors are released that cause the migration and division of cells involved in the proliferative phase.

The proliferative phase is characterized by angiogenesis, collagen deposition, granulation tissue formation, epithelialization, and wound contraction. In angiogenesis, new blood vessels are formed by vascular endothelial cells. In fibroplasia and granulation tissue formation, fibroblasts grow and form a new, provisional extracellular matrix (ECM) by excreting collagen and fibronectin. Concurrently, re-epithelialization of the epidermis occurs, in which epithelial cells proliferate and 'crawl' atop the wound bed, providing cover for the new tissue.

In contraction, the wound is made smaller by the action of myofibroblasts, which establish a grip on the wound edges and contract themselves using a mechanism similar to that in smooth muscle cells. When the cells' roles are close to complete, unneeded cells undergo apoptosis.

In the maturation and remodeling phase, collagen is remodeled and realigned along tension lines and cells that are no longer needed are removed by apoptosis.

However, this process is not only complex but fragile, and susceptible to interruption or failure leading to the formation of chronic non-healing wounds. Factors which may contribute to this include diabetes, venous or arterial disease, old age, and infection.

This text uses material from Wikipedia, licensed under CC BY-SA