Brain protein influences how the brain manages stress; suggests new model of depression

November 12, 2014
Credit: Rice University

The brain's ability to effectively deal with stress or to lack that ability and be more susceptible to depression, depends on a single protein type in each person's brain, according to a study conducted at the Icahn School of Medicine at Mount Sinai and published November 12 in the journal Nature.

The Mount Sinai study findings challenge the current thinking about and the drugs currently used to treat the disorder.

"Our findings are distinct from serotonin and other neurotransmitters previously implicated in depression or resilience against it," says the study's lead investigator, Eric J. Nestler, MD, PhD, Nash Family Professor, Chair of the Department of Neuroscience and Director of the Friedman Brain Institute at the Icahn School of Medicine at Mount Sinai. "These data provide a new pathway to find novel and potentially more effective antidepressants."

The protein involved in this new model of depression is beta-catenin (B-catenin), which is expressed throughout the brain and is known to have many biological roles. Using mouse models exposed to chronic social stress, Mount Sinai investigators discovered that it is the activity of the protein in the D2 neurons, a specific set of nerve cells (neurons) in the nucleus accumbens (NAc), the brain's reward and motivation center, which drives resiliency.

Specifically, the research team found that animals whose brains activated B-catenin were protected against stress, while those with inactive B-catenin developed signs of depression in their behavior. The study also showed suppression of this protein in brain tissue of depressed patients examined post mortem.

"Our human data are notable in that we show decreased activation of B-catenin in depressed humans, regardless of whether these individuals were on or off antidepressants at the time of death," says the study's co-lead investigator, Caroline Dias, an MD-PhD student at the Icahn School of Medicine at Mount Sinai. "This implies that the antidepressants were not adequately targeting this brain system."

In the study, researchers blocked B-catenin in the D2 brain cells in mice that had previously shown resilience to depression and found the animals became susceptible to stress. Conversely, activating B-catenin in stress mice bolstered their resilience to stress.

Nearly all nerve cells in the NAc region are called medium spiny neurons. These cells are divided into two types based on how they detect the neurotransmitter dopamine, which is important in regulating reward and motivation. One type of neuron detects dopamine with D1 receptors and the other with D2 receptors. The Mount Sinai data specifically implicate the D2 neurons in mediating deficits in reward and motivation that contribute to depression or enhancements that mediate resilience.

Examining the genes regulated by B-catenin, the team then traced the pathway that was engaged when B-catenin was activated in the D2 neurons and discovered a novel connection between the protein and Dicer1, an enzyme important in making microRNAs, small molecules which control gene expression.

"While we have identified some of the genes that are targeted, future studies will be key to see how these genes affect depression. Presumably, they are important in mediating the pro-resilient effects of the B-catenin-Dicer cascade," says Dr. Dias.

While the molecular underpinnings of depression have remained elusive despite decades of research, the new Mount Sinai study breaks new ground in understanding depression in three important ways. It is the first report that B-catenin is deficient in in human depression and mouse depression models; it is the first study to show that higher activity of B-catenin drives resilience and the first report demonstrating a strong connection between B-catenin and control of microRNA synthesis.

The findings also suggest that future therapy for depression could be aimed at bolstering resilience against stress.

"While most prior efforts in antidepressant drug discovery have focused on ways to undo the bad effects of stress, our findings provide a pathway to generate novel antidepressants that instead activate mechanisms of natural resilience," says Dr. Nestler.

Explore further: Changes in a single gene's action can control addiction and depression-related behaviors

More information: Nature, dx.doi.org/10.1038/nature13976

Related Stories

Changes in a single gene's action can control addiction and depression-related behaviors

November 10, 2014
Regulation of a single, specific gene in a brain region related to drug addiction and depression is sufficient to reduce drug and stress responses, according to a study conducted at the Icahn School of Medicine at Mount Sinai ...

A new angle on infertility

November 7, 2014
Scientists from the RIKEN BioResource Center in Tsukuba, Japan, have discovered that a single mutation in the beta-catenin gene, which codes a protein known to be deeply involved in a number of developmental and homeostatic ...

Opioid abuse initiates specific protein interactions in neurons in brain's reward system

February 24, 2014
Identifying the specific pathways that promote opioid addiction, pain relief, and tolerance are crucial for developing more effective and less dangerous analgesics, as well as developing new treatments for addiction. Now, ...

Autophagy and antidepressants

November 11, 2014
FK506 binding protein 51 (FKBP51) regulates acute and chronic effects of treatment with antidepressants via autophagic pathways (processes by which cells break down and recycle their components) in mice and is linked to the ...

Turning off depression in the brain

April 17, 2014
Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's a twist.

Recommended for you

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

Schizophrenia originates early in pregnancy, 'mini-brain' research suggests

November 20, 2017
Symptoms of schizophrenia usually appear in adolescence or young adulthood, but new research reveals that the brain disease likely begins very early in development, toward the end of the first trimester of pregnancy. The ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

oliverlu70
not rated yet Nov 12, 2014
The serotonin hypothesis was quietly discarded years ago, the field just didn't make a big deal of it because they haven't come up with a new paradigm to replace it yet.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.