Scientists pinpoint a new line of defence used by cancer cells

December 8, 2014, Cancer Research UK
The image shows cancer cells where the number of chromosomes in each nucleus is not as it should be -- a condition known as "aneuploidy." The green spots show a marker for the chromosomes, and the red and blue fluorescent stains highlight two different parts of the cell's internal skeleton. Credit: Image courtesy of Dr Nicola Brownlow and Professor Peter Parker from the Cancer Research UK London Research Institute.

Cancer Research UK scientists have discovered a new line of defence used by cancer cells to evade cell death, according to research published in Nature Communications today.

The team identified a critical pathway of molecular signals which throw a lifeline to , enabling them to survive even though they contain vast DNA errors which would usually trigger .

The PKCƐ (Protein Kinase C epsilon), which is used by cancer cells but rarely by normal cells, could be important in targeting some cancer cells as they rely on this pathway to survive.

The pathway helps the cancer cells survive by allowing them to untangle and separate their DNA. Cancer cells rely on this signal pathway more than because their DNA is more jumbled and prone to becoming tangled.

Turning off the pathway can trigger cancer cells to self-destruct because the machinery used to untangle the DNA fails, meaning it is torn apart as the cell divides - ravaging and causing huge breaks in the code which lead to the cancer cells' demise.

Lead researcher Dr Nicola Brownlow, Cancer Research UK scientist at the Cancer Research UK London Research Institute, said: "Taking out this line of defence could be a powerful way to target the disease and re-programme cancer cells to self-destruct.

"The next step in our research is to understand which cancer types have this weak spot and to look for a marker that will allow us to test patients for cancers with this fault."

A cell's ability to divide in two is fundamental to life. These white blobs show DNA being separated as cells divide. But if mistakes are made, this can lead to genetic errors, and cancer. Credit: Cancer Research UK

Nell Barrie, Cancer Research UK's senior science information manager, said: "This research has uncovered an important weakness which we could use to tackle cancer. Newer, precise methods which target the dents in cancer's armoury provide fresh opportunities for better treatments to help more people survive the disease.

"There's still a lot of work to do before this research leads to a new cancer treatment, but it offers us a new strategy to beat the disease by helping us to understand what causes and drives cancer."

Explore further: Scientists trigger self-destruct switch in lung cancer cells

More information: Brownlow et al. Mitotic catenation is monitored and resolved by a PKCε-regulated pathway. Nature Communications. DOI: 10.1038/ncomm6685.

Related Stories

Scientists trigger self-destruct switch in lung cancer cells

October 31, 2014
Cancer Research UK scientists have found a drug combination that can trigger the self-destruct process in lung cancer cells - paving the way for new treatments, according to research that will be presented at the National ...

Scientists discover why bowel cancer sometimes outsmarts treatment

December 1, 2014
A new study that challenges the prevailing view of how bowel cancer develops in the large intestine is published today in Nature Medicine.

Possible breast cancer 'achilles heel' discovered

October 15, 2014
A leading team of Newcastle University scientists have found that 'turning off' two proteins reduces the ability of breast cancer cells to survive and grow.

Scientists discover new route to boost pancreatic cancer treatment

May 30, 2014
Cancer Research UK scientists have uncovered new insights into how a key pancreatic cancer drug – gemcitabine – is broken down in tumour cells, according to research* published in the British Journal of Cancer (BJC), ...

Scientists uncover vast numbers of DNA 'blind spots' that may hide cancer-causing mistakes

November 14, 2014
Cancer Research UK scientists have found more than 400 'blind spots' in DNA which could hide cancer-causing gene faults, according to research published today in Cancer Research.

Mesothelial cells promote ovarian cancer metastasis

September 9, 2014
Less than half of the women diagnosed with ovarian cancer will survive beyond 5 years. Ovarian cancer readily spreads to abdominal organs, which are covered by a layer of cells called the mesothelium. Ovarian cancer cells ...

Recommended for you

Cancer comes back all jacked up on stem cells

March 19, 2018
After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important - knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. ...

A small, daily dose of Viagra may reduce colorectal cancer risk

March 19, 2018
A small, daily dose of Viagra significantly reduces colorectal cancer risk in an animal model that is genetically predetermined to have the third leading cause of cancer death, scientists report.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.

Improved capture of cancer cells in blood could help track disease

March 15, 2018
Tumor cells circulating throughout the body in blood vessels have long been feared as harbingers of metastasizing cancer - even though most free-floating cancer cells will not go on to establish a new tumor.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.