Researchers solve metabolic mystery lending insight into Lafora disease

January 26, 2015 by Elizabeth Adams, University of Kentucky
From left: Madushi Raththagala, Craig Vander Kooi and Matthew Gentry.

Scientists at the University of Kentucky College of Medicine have determined how an enzyme essential for energy metabolism functions, solving a mystery eluding molecular biologists for decades.

Matthew Gentry, Ph.D, and Craig Vander Kooi, Ph.D, associate professors of molecular and cellular biochemistry, and researcher Madushi Raththagala, Ph.D, recently discovered the role of the enzyme laforin in modifying human glycogen and thereby preventing neurodegeneration. Their work provides fundamental insights that link with the fatal, neurodegenerative form of epilepsy called Lafora disease. These findings were reported Jan. 22, 2015, in the journal Molecular Cell.

Lafora disease was first described by Gonzalo Rodriquez-Lafora in 1911. In 1998, a team of scientists at University of Toronto identified the laforin gene as being mutated in Lafora disease patients. Mutations in the gene encoding the laforin protein result in the accumulation aberrant glycogen-like accumulations called Lafora bodies that resemble plant starch more than human glycogen.

Previous research showed Lafora bodies are the driving agents of Lafora disease. Lafora disease patients develop normally until their second decade of life when they experience an epileptic episode. These episodes increase in severity and number until the patient eventually dies from a massive seizure, status epilepticus or aspiration pneumonia.

Through their research, Raththagala, Vander Kooi, and Gentry determined the structural basis for the specific enzymatic function of laforin. This discovery allowed them to define how laforin modifies glycogen to inhibit Lafora body formation. Additionally, their work defines why specific patient mutations in laforin result in the disease, which opens pathways to understanding and treating the disease.

"A number of groups have tried to determine the structure of laforin over the last 17 years and no one had succeeded," Gentry said. "Dr. Raththagala worked tirelessly trying different strategies that we developed to achieve this goal. When we realized our success to get over the final hurdle, I had to sit down to fully comprehend our accomplishment. It is exciting to report this structure, but even more exciting to now consider potential therapeutic possibilities."

Explore further: Mouse model brings new perspectives on Lafora disease

More information: "Structural Mechanism of Laforin Function in Glycogen Dephosphorylation and Lafora Disease." DOI: dx.doi.org/10.1016/j.molcel.2014.11.020

Related Stories

Mouse model brings new perspectives on Lafora disease

August 29, 2011
Short-term energy storage in animal cells is usually achieved through the accumulation of glucose, in the form of long and branched chains, known as glycogen. But when this accumulation happens in neurons it is fatal, causing ...

Glycogen accumulation in neurons causes brain damage and shortens the lives of flies and mice

May 2, 2012
Collaborative research by groups headed by scientists Joan J. Guinovart and Marco Milán at the Institute for Research in Biomedicine (IRB Barcelona) has revealed conclusive evidence about the harmful effects of the accumulation ...

Researchers reveal the dual role of brain glycogen

February 27, 2014
In 2007, in an article published in Nature Neuroscience, scientists at the Institute for Research in Biomedicine (IRB Barcelona) headed by Joan Guinovart, an authority on glycogen metabolism, reported that in Lafora Disease ...

Recommended for you

Psychiatric disorders share an underlying genetic basis

June 21, 2018
Psychiatric disorders such as schizophrenia and bipolar disorder often run in families. In a new international collaboration, researchers explored the genetic connections between these and other disorders of the brain at ...

Deep data dive helps predict cerebral palsy

June 21, 2018
When University of Delaware molecular biologist Adam Marsh was studying the DNA of worms living in Antarctica's frigid seas to understand how the organisms managed to survive—and thrive—in the extremely harsh polar environment, ...

Genetic variation in progesterone receptor tied to prematurity risk, study finds

June 21, 2018
Humans have unexpectedly high genetic variation in the receptor for a key pregnancy-maintaining hormone, according to research led by scientists at the Stanford University School of Medicine. The finding may help explain ...

Shared genetics may shape treatment options for certain brain disorders

June 20, 2018
Symptoms of schizophrenia and bipolar disorder, including psychosis, depression and manic behavior, have both shared and distinguishing genetic factors, an international consortium led by researchers from Vanderbilt University ...

Scientists unravel DNA code behind rare neurologic disease

June 20, 2018
Scientists conducting one of the largest full DNA analyses of a rare disease have identified a gene mutation associated with a perplexing brain condition that blinds and paralyzes patients.

Simple sugar delays neurodegeneration caused by enzyme deficiency

June 20, 2018
A new therapeutic approach may one day delay neurodegeneration typical of a disease called mucopolysaccharidoses IIIB (MPS IIIB). Neurodegeneration in this condition results from the abnormal accumulation of essential cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.