3D-printed guides can help restore function in damaged nerves

February 23, 2015
3D-printed guides can help restore function in damaged nerves

Scientists at the University of Sheffield have succeeded in using a 3D printed guide to help nerves damaged in traumatic incidents repair themselves.

The team used the device to repair in animal models and say the method could help treat many types of .

The device, called a guidance conduit (NGC), is a framework of tiny tubes, which guide the damaged nerve ends towards each other so that they can repair naturally.

Patients with nerve injuries can suffer complete loss of sensation in the damaged area, which can be extremely debilitating. Current methods of repairing nerve damage require surgery to suture or graft the nerve endings, a practice which often yields imperfect results.

Although some NGCs are currently used in surgery, they can only be made using a limited range of materials and designs, making them suitable only for certain types of injury.

The technique, developed in Sheffield's Faculty of Engineering, uses Computer Aided Design (CAD) to design the devices, which are then fabricated using laser direct writing, a form of 3D printing. The advantage of this is that it can be adapted for any type of nerve damage or even tailored to an individual patient.

Researchers used the 3D printed guides to repair nerve injuries using a novel mouse model developed in Sheffield's Faculty of Medicine, Dentistry and Health to measure nerve regrowth. They were able to demonstrate successful repair over an injury gap of 3mm, in a 21-day period.

"The advantage of 3D printing is that NGCs can be made to the precise shapes required by clinicians," says John Haycock, Professor of Bioengineering at Sheffield. "We've shown that this works in animal models, so the next step is to take this technique towards the clinic".

The Sheffield team used a material called polyethylene glycol, which is already cleared for clinical use and is also suitable for use in 3D printing. "Further work is already underway to investigate device manufacture using biodegradable materials, and also making devices that can work across larger injuries" says Dr Frederik Claeyssens, Senior Lecturer in Biomaterials at Sheffield.

"Now we need to confirm that the devices work over larger gaps and address the regulatory requirements," says Fiona Boissonade, Professor of Neuroscience at Sheffield.

Explore further: New technique may help severely damaged nerves regrow and restore function

More information: Christopher J. Pateman, Adam J. Harding, Adam Glen, Caroline S. Taylor, Claire R. Christmas, Peter P. Robinson, Steve Rimmer, Fiona M. Boissonade, Frederik Claeyssens, John W. Haycock, "Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair," Biomaterials, Volume 49, May 2015, Pages 77-89, ISSN 0142-9612, DOI: 10.1016/j.biomaterials.2015.01.055.

Related Stories

New technique may help severely damaged nerves regrow and restore function

April 23, 2012
Engineers at the University of Sheffield have developed a method of assisting nerves damaged by traumatic accidents to repair naturally, which could improve the chances of restoring sensation and movement in injured limbs.

New study shows promise for new nerve repair technique

August 9, 2014
A multicenter study including University of Kentucky researchers found that a new nerve repair technique yields better results and fewer side effects than other existing techniques.

Feeding the Schwanns: New technique could bring cell therapy for nerve damage a step closer

October 11, 2012
A new way to grow cells vital for nerve repair, developed by researchers from the University of Sheffield, could be a vital step for use in patients with severe nerve damage, including spinal injury (1).

Laser therapy on the repair of a large-gap transected sciatic nerve in a reinforced nerve conduit

July 24, 2014
Researchers at Central Taiwan University of Science and Technology, Taiwan, led by Prof. Liu, Dr. Shen and Mrs. Yang have developed a biodegradable nerve conduit containing genipin-cross-linked gelatin was annexed using beta-tricalcium ...

Recommended for you

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.