Combined chemotherapy and immunotherapy shows promise for advanced prostate cancers

April 29, 2015
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Chemotherapy can be very effective against small prostate tumors. Larger prostate tumors, however, accumulate cells that suppress the body's immune response, allowing the cancer to grow despite treatment. Researchers at the University of California, San Diego School of Medicine now find that blocking or removing these immune-suppressing cells allows a special type of chemotherapy—and the immune cells it activates—to destroy prostate tumors. This novel combination therapy, termed chemoimmunotherapy, achieved near complete remission in mouse models of advanced prostate cancer.

The study is published April 29 in Nature.

Advanced or does not typically respond to chemotherapy. Prostate cancers also fail to respond to a promising new type of immunotherapy drugs, called checkpoint inhibitors, which disable cancer ' cloaking mechanism so that a person's own immune system can better fight the tumor. This specific resistance is likely due in part to immunosuppressive B cells, which are more common in larger in mice, as well as in advanced and metastatic prostate cancer in humans. As the name suggests, these cells keep the immune system at bay, rendering most therapies ineffective and allowing malignant tumors to grow unchecked.

In this study, researchers worked with three different mouse models of advanced prostate cancer. All three models were resistant to low doses of the chemotherapy drug oxaliplatin, which has the unique ability to activate cancer-killing . But when the researchers blocked the development or function of immunosuppressive B cells or removed them entirely before treating the mice with low-dose oxaliplatin, the prostate tumors were almost completely destroyed by the mice's own immune cells. The team got similar results when low-dose oxaliplatin was combined with a checkpoint inhibitor.

"The presence of such B cells in human prostate cancer calls for clinical testing of this novel therapeutic approach," said Shabnam Shalapour, PhD, postdoctoral researcher and first author of the study.

Prostate cancer is the second leading cause of cancer-related death in American men. About one in seven men will be diagnosed with prostate cancer during their lifetimes.

"In addition to prostate cancer, similar immunosuppressive B cells can be detected in other human cancers," said senior author Michael Karin, PhD, Distinguished Professor of Pharmacology and Pathology at UC San Diego. "This indicates that B cell-mediated immunosuppression might be the reason several other cancers are also unresponsive to checkpoint inhibitors, raising the hope that chemoimmunotherapy will have broader applications for many cancer types."

Explore further: Researchers find protein that may signal more aggressive prostate cancers

More information: Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy, Nature, DOI: 10.1038/nature14395

Related Stories

Researchers find protein that may signal more aggressive prostate cancers

April 13, 2015
University of Michigan researchers have discovered a biomarker that may be a potentially important breakthrough in diagnosing and treating prostate cancer.

Study identifies 'lethal' subtype of prostate cancer

March 16, 2015
A University of Colorado Cancer Center study published in the journal Cancer Research defines a new, distinct subtype of "lethal" prostate cancer marked by the loss of two genes, MAP3K7 and CHD1. Overall about 10 percent ...

Drug combo suppresses growth of late-stage prostate cancer tumors

January 27, 2015
Low doses of metformin, a widely used diabetes medication, and a gene inhibitor known as BI2536 can successfully halt the growth of late-stage prostate cancer tumors, a Purdue University study finds.

New target for prostate cancer treatment discovered

February 20, 2015
Keck Medicine of the University of Southern California (USC) scientists have found a promising new therapeutic target for prostate cancer. The findings offer evidence that a newly discovered member of a family of cell surface ...

Healthy-looking prostate cells mask cancer-causing mutations

March 2, 2015
Prostate cells that look normal under the microscope may be hiding genetic mutations that could develop into cancer, prompting new ways to improve treatment for the disease, according to research published in Nature Genetics ...

HIV drug blocks bone metastases in prostate cancer

December 1, 2014
Although prostate cancer can be successfully treated in many men, when the disease metastasizes to the bone, it is eventually lethal. In a study published online December 1st in the journal Cancer Research, researchers show ...

Recommended for you

Zebrafish larvae could be used as 'avatars' to optimize personalized treatment of cancer

August 21, 2017
Portuguese scientists have for the first time shown that the larvae of a tiny fish could one day become the preferred model for predicting, in advance, the response of human malignant tumors to the various therapeutic drugs ...

Searching for the 'signature' causes of BRCAness in breast cancer

August 21, 2017
Breast cancer cells with defects in the DNA damage repair-genes BRCA1 and BRCA2 have a mutational signature (a pattern of base swaps—e.g., Ts for Gs, Cs for As—throughout a genome) known in cancer genomics as "Signature ...

Scientists discover vitamin C regulates stem cell function, curbs leukemia development

August 21, 2017
Not much is known about stem cell metabolism, but a new study from the Children's Medical Center Research Institute at UT Southwestern (CRI) has found that stem cells take up unusually high levels of vitamin C, which then ...

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

Spaser can detect, kill circulating tumor cells to prevent cancer metastases, study finds

August 21, 2017
A nanolaser known as the spaser can serve as a super-bright, water-soluble, biocompatible probe capable of finding metastasized cancer cells in the blood stream and then killing these cells, according to a new research study.

Comprehensive genomic analysis offers insights into causes of Wilms tumor development

August 21, 2017
A comprehensive genomic analysis of Wilms tumor - the most common kidney cancer in children - found genetic mutations involving a large number of genes that fall into two major categories. These categories involve cellular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.