New genetic mutation could signal start of malaria drug resistance in Africa

April 17, 2015

Early indicators of the malaria parasite in Africa developing resistance to the most effective drug available have been confirmed, according to new research published in Antimicrobial Agents and Chemotherapy.

Researchers at the London School of Hygiene & Tropical Medicine found Plasmodium falciparum malaria parasites with a mutation to the gene Ap2mu were less sensitive to the antimalarial drug artemisinin.

A study in 2013, also led by the School, suggested an initial link between a mutation in the ap2mu gene and low levels of malaria parasites remaining in the blood of Kenyan children after they had been treated. However, further research was needed to confirm if these genetic characteristics represented an early step towards resistance.

In the new study, researchers genetically altered the malaria parasite in the laboratory to mutate ap2mu in the same way that had been observed in Kenya. They found the altered parasite was significantly less susceptible, requiring 32% more drug to be killed by artemisinin. The genetically altered parasite was also 42.4% less susceptible to the traditional antimalarial drug, quinine.

Earlier this year a different research group discovered mutations in the gene kelch13 which were linked to reduced susceptibility to artemisinin combination treatment in South East Asia. Historically, resistance to antimalarial medicines has emerged in South East Asia and then spread to Africa. But these new findings suggest a different route to drug resistance may be developing independently in Africa.

Lead researcher Dr Colin Sutherland, Reader in Parasitology at the London School of Hygiene & Tropical Medicine, said: "Our findings could be a sign of much worse things to come for malaria in Africa. The malaria parasite is constantly evolving to evade our control efforts. We've already moved away from using quinine to treat cases as the malaria parasite has become more resistant to it, but if further drug resistance were to develop against our most valuable malaria drug, artemisinin, we would be facing a grave situation.

"We now know that the gene ap2mu is an important factor in determining how well our drugs kill malaria parasites. We will be conducting laboratory and field studies to more accurately measure the impact of mutations in the ap2mu gene. We hope our findings will help understand resistance of malaria to drugs, and potentially be an important tool for monitoring malaria treatment in the future."

The World Health Organization estimates more than half a million people die from malaria every year, mostly children under five. Plasmodium falciparum is the most deadly form of the .

Explore further: Researchers identify molecular mechanism responsible for making malaria parasites drug-resistant

More information: The mu-subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrobial Agents and Chemotherapy. DOI: 10.1128/AAC.04067-14

Related Stories

Researchers identify molecular mechanism responsible for making malaria parasites drug-resistant

April 16, 2015
University of Notre Dame researchers led an international team to identify a molecular mechanism responsible for making malaria parasites resistant to artemisinins, the leading class of antimalarial drugs.

Team discovers reasons for malaria's drug resistance

December 11, 2014
Scientists from Nanyang Technological University (NTU) have discovered exactly how the malaria parasite is developing resistance towards the most important front-line drugs used to treat the disease.

Study in Myanmar confirms artemisinin-resistant malaria close to border with India

February 19, 2015
The spread of malaria parasites that are resistant to the drug artemisinin - the frontline treatment against malaria infection - into neighbouring India would pose a serious threat to the global control and eradication of ...

Researchers identify genetic marker of resistance to key malaria drug

December 18, 2013
An international team of researchers has discovered a way to identify, at a molecular level, malaria-causing Plasmodium falciparum parasites that are resistant to artemisinin, the key drug for treating this disease. The research ...

Malaria combination drug therapy for children

December 30, 2014
A drug combination of artemisinin-naphthoquine should be considered for the treatment of children with uncomplicated malaria in settings where multiple parasite species cause malaria according to Tim Davis from University ...

Recommended for you

Four simple tests could help GPs spot pneumonia and reduce unnecessary antibiotics

November 23, 2017
Testing for fever, high pulse rate, crackly breath sounds, and low oxygen levels could be key to helping GPs distinguish pneumonia from less serious infections, according to a large study published in the European Respiratory ...

New approach to tracking how deadly 'superbugs' travel could slow their spread

November 22, 2017
Killer bacteria - ones that have out-evolved our best antibiotics—may not go away anytime soon. But a new approach to tracking their spread could eventually give us a fighting chance to keep their death toll down.

Research points to diagnostic test for top cause of liver transplant in kids

November 22, 2017
Biliary atresia is the most common cause of liver transplants for children in the United States. Now researchers report in Science Translational Medicine finding a strong biomarker candidate that could be used for earlier ...

Metabolites altered in chronic kidney disease

November 22, 2017
Chronic kidney disease (CKD) affects 1 in 7 people in the United States, according to the U.S. National Institute of Diabetes & Digestive & Kidney Diseases (NIDDK). These individuals have a very high risk of cardiovascular ...

Rainfall can indicate that mosquito-borne epidemics will occur weeks later

November 22, 2017
A new study demonstrates that outbreaks of mosquito-borne viruses Zika and Chikungunya generally occur about three weeks after heavy rainfall.Researchers also found that Chikungunya will predominate over Zika when both circulate ...

Alcohol consumption and metabolic factors act together to increase the risk of severe liver disease

November 22, 2017
A new study provides insights into the interaction between alcohol consumption and metabolic factors in predicting severe liver disease in the general population. The findings, which are published in Hepatology, indicate ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
1 / 5 (1) Apr 17, 2015
mosquitoes?

Solution: Legalize DDT and stop human suffering.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.