New genetic mutation could signal start of malaria drug resistance in Africa

April 17, 2015, London School of Hygiene & Tropical Medicine

Early indicators of the malaria parasite in Africa developing resistance to the most effective drug available have been confirmed, according to new research published in Antimicrobial Agents and Chemotherapy.

Researchers at the London School of Hygiene & Tropical Medicine found Plasmodium falciparum malaria parasites with a mutation to the gene Ap2mu were less sensitive to the antimalarial drug artemisinin.

A study in 2013, also led by the School, suggested an initial link between a mutation in the ap2mu gene and low levels of malaria parasites remaining in the blood of Kenyan children after they had been treated. However, further research was needed to confirm if these genetic characteristics represented an early step towards resistance.

In the new study, researchers genetically altered the malaria parasite in the laboratory to mutate ap2mu in the same way that had been observed in Kenya. They found the altered parasite was significantly less susceptible, requiring 32% more drug to be killed by artemisinin. The genetically altered parasite was also 42.4% less susceptible to the traditional antimalarial drug, quinine.

Earlier this year a different research group discovered mutations in the gene kelch13 which were linked to reduced susceptibility to artemisinin combination treatment in South East Asia. Historically, resistance to antimalarial medicines has emerged in South East Asia and then spread to Africa. But these new findings suggest a different route to drug resistance may be developing independently in Africa.

Lead researcher Dr Colin Sutherland, Reader in Parasitology at the London School of Hygiene & Tropical Medicine, said: "Our findings could be a sign of much worse things to come for malaria in Africa. The malaria parasite is constantly evolving to evade our control efforts. We've already moved away from using quinine to treat cases as the malaria parasite has become more resistant to it, but if further drug resistance were to develop against our most valuable malaria drug, artemisinin, we would be facing a grave situation.

"We now know that the gene ap2mu is an important factor in determining how well our drugs kill malaria parasites. We will be conducting laboratory and field studies to more accurately measure the impact of mutations in the ap2mu gene. We hope our findings will help understand resistance of malaria to drugs, and potentially be an important tool for monitoring malaria treatment in the future."

The World Health Organization estimates more than half a million people die from malaria every year, mostly children under five. Plasmodium falciparum is the most deadly form of the .

Explore further: Researchers identify molecular mechanism responsible for making malaria parasites drug-resistant

More information: The mu-subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrobial Agents and Chemotherapy. DOI: 10.1128/AAC.04067-14

Related Stories

Researchers identify molecular mechanism responsible for making malaria parasites drug-resistant

April 16, 2015
University of Notre Dame researchers led an international team to identify a molecular mechanism responsible for making malaria parasites resistant to artemisinins, the leading class of antimalarial drugs.

Team discovers reasons for malaria's drug resistance

December 11, 2014
Scientists from Nanyang Technological University (NTU) have discovered exactly how the malaria parasite is developing resistance towards the most important front-line drugs used to treat the disease.

Study in Myanmar confirms artemisinin-resistant malaria close to border with India

February 19, 2015
The spread of malaria parasites that are resistant to the drug artemisinin - the frontline treatment against malaria infection - into neighbouring India would pose a serious threat to the global control and eradication of ...

Researchers identify genetic marker of resistance to key malaria drug

December 18, 2013
An international team of researchers has discovered a way to identify, at a molecular level, malaria-causing Plasmodium falciparum parasites that are resistant to artemisinin, the key drug for treating this disease. The research ...

Malaria combination drug therapy for children

December 30, 2014
A drug combination of artemisinin-naphthoquine should be considered for the treatment of children with uncomplicated malaria in settings where multiple parasite species cause malaria according to Tim Davis from University ...

Recommended for you

Past encounters with the flu shape vaccine response

February 20, 2018
New research on why the influenza vaccine was only modestly effective in recent years shows that immune history with the flu influences a person's response to the vaccine.

Building better tiny kidneys to test drugs and help people avoid dialysis

February 16, 2018
A free online kidney atlas built by USC researchers empowers stem cell scientists everywhere to generate more human-like tiny kidneys for testing new drugs and creating renal replacement therapies.

Expanding Hepatitis C testing to all adults is cost-effective and improves outcomes

February 16, 2018
According to a new study, screening all adults for hepatitis C (HCV) is a cost-effective way to improve clinical outcomes of HCV and identify more infected people compared to current recommendations. Using a simulation model, ...

Study suggests expanded range for emerging tick-borne disease

February 16, 2018
Human cases of Borrelia miyamotoi, a tick-borne infection with some similarities to Lyme disease, were discovered in the eastern United States less than a decade ago. Now new research led by the Yale School of Public Health ...

Flu shot only 36 percent effective, making bad year worse (Update)

February 15, 2018
The flu vaccine is doing a poor job protecting older Americans and others against the bug that's causing most illnesses.

IFN-mediated immunity to influenza A virus infection influenced by RIPK3 protein

February 15, 2018
Each year, influenza kills half a million people globally with the elderly and very young most often the victims. In fact, the Centers for Disease Control and Prevention reported 37 children have died in the United States ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Shootist
1 / 5 (1) Apr 17, 2015
mosquitoes?

Solution: Legalize DDT and stop human suffering.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.