3D printer generates realistic model of a cancerous tumour

May 27, 2015, Institute of Physics
The three-dimensional tumour model consists of a scaffold of fibrous proteins coated in cervical cancer cells.

An international scientific team has successfully created a three-dimensional model of a cancerous tumour using a 3D printer. Their model could ultimately help discover new drugs and cast new light on how tumours develop, grow and spread.

Presented in the IOP Publishing journal Biofabrication, the realistic 3D model consists of a scaffold of fibrous proteins coated in cervical cancer cells. A 10mm by 10mm grid structure – made from gelatin, alginate and fibrin – recreates the fibrous proteins that make up the extracellular matrix of a tumour. The grid structure is coated in Hela cells: a unique, "immortal" cell line that was originally derived from a cervical cancer patient in 1951.

The most effective way of studying tumours is in a clinical trial. However, ethical and safety limitations make it difficult for such studies to be carried out on a wide scale. To overcome this, two-dimensional models – consisting of a single layer of cells – have been created to mimic the physiological environment of tumours and test anti-cancer drugs in a realistic way.

With the advent of 3D printing, it is now possible to provide a more realistic representation of the environment surrounding a tumour. The researchers demonstrated this by comparing results from their 3D model with results from a 2D model.

After testing if the cells remained viable, or alive, after printing, the researchers examined how the cells proliferated, how they expressed a specific set of proteins that help tumours spread, and how resistant the cells were to anti-cancer drugs.

They found that 90% of the cancer cells remained viable after the printing process. In addition, the 3D model shared more similarities with a tumour than 2D models including a higher proliferation rate, higher protein expression and higher resistance to .

"We have provided a scalable and versatile 3D cancer model that shows a greater resemblance to natural cancer than 2D cultured cancer cells," says the lead author, Professor Wei Sun of Tsinghua University in China and Drexel University in the United States.

The researchers are now trying to understand both cell-cell and cell-substrate communication and immune responses for their printed -like models. "With further understanding of these 3D models, we plan to use them to study the development, invasion, metastasis and treatment of cancer using specific cancer cells from patients," says Professor Sun. "We can also use these models to test the efficacy and safety of new cancer treatment therapies and cancer drugs."

Explore further: 3-D printing cancer cells to mimic tumors

Related Stories

3-D printing cancer cells to mimic tumors

April 10, 2014
A group of researchers in China and the US have successfully created a 3D model of a cancerous tumour using a 3D printer.

Patient cancer cells help to test treatments

May 7, 2015
A study, published today in Cell, demonstrates the power of organoids to capture, in three dimensions, the multiple mutations that occur in tumours. Organoids, small clusters of cells that accurately mimic the behaviour of ...

Researchers find potential anti-cancer use for anti-epilepsy drug

January 27, 2015
Scientists at the University of York have discovered that a drug used widely to combat epilepsy has the potential to reduce the growth and spread of breast cancer.

New drug combination shows promise for breaking breast cancer resistance

April 20, 2015
Researchers from The University of Manchester working with drug development company Evgen Pharma, have developed a new combination of drugs which could overcome treatment resistance and relapse in breast cancer.

How cancer tricks the lymphatic system into spreading tumors

May 11, 2015
Swollen lymph nodes are often the earliest sign of metastatic spread of cancer cells. Now cancer researchers and immunologists at Sweden's Karolinska Institutet have discovered how cancer cells can infiltrate the lymphatic ...

Recommended for you

Deep space radiation treatment reboots brain's immune system

May 21, 2018
Planning a trip to Mars? You'll want to remember your anti-radiation pills.

Receptor proteins that respond to nicotine may help fat cells burn energy

May 21, 2018
The same proteins that moderate nicotine dependence in the brain may be involved in regulating metabolism by acting directly on certain types of fat cells, new research from the University of Michigan Life Sciences Institute ...

Atomic-level study reveals why rare disorder causes sudden paralysis

May 21, 2018
A rare genetic disorder in which people are suddenly overcome with profound muscle weakness is caused by a hole in a membrane protein that allows sodium ions to leak across cell membranes, researchers at the University of ...

New era for blood transfusions through genome sequencing

May 18, 2018
Most people are familiar with A, B, AB and O blood types, but there are hundreds of additional blood group "antigens" on red blood cells—substances that can trigger the body's immune response—that differ from person to ...

Robots grow mini-organs from human stem cells

May 17, 2018
An automated system that uses robots has been designed to rapidly produce human mini-organs derived from stem cells. Researchers at the University of Washington School of Medicine in Seattle developed the new system.

Scientists uncover a new face of a famous protein, SWI2/SNF2 ATPase

May 17, 2018
A team of Texas A&M and Texas A&M AgriLife Research scientists now have a deeper understanding of a large switch/sucrose non-fermentable (SWI/SNF) protein complex that plays a pivotal role in plant and human gene expression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.