3-D printing cancer cells to mimic tumors

April 10, 2014, Institute of Physics

A group of researchers in China and the US have successfully created a 3D model of a cancerous tumour using a 3D printer.

The model, which consists of a scaffold of fibrous proteins coated in cervical cancer cells, has provided a realistic 3D representation of a tumour's environment and could help in the discovery of new drugs and cast new light on how tumours develop, grow and spread throughout the body.

The results of the study have been published today, 11 April, in IOP Publishing's journal Biofabrication.

The model consists of a grid structure, 10 mm in width and length, made from gelatin, alginate and fibrin, which recreates the fibrous proteins that make up the extracellular matrix of a tumour.

The grid structure is coated in Hela cells—a unique, 'immortal' cell line that was originally derived from a patient in 1951. Due to the cells' ability to divide indefinitely in laboratory conditions, the cell line has been used in some of the most significant scientific breakthrough studies of the past 50 years.

Although the most effective way of studying tumours is to do so in a clinical trial, ethical and safety limitations make it difficult for these types of studies to be carried out on a wide scale.

To overcome this, 2D models, consisting of a single layer of cells, have been created to mimic the physiological environment of tumours so that different types of drugs can be tested in a realistic way.

With the advent of 3D printing, it is now possible to provide a more realistic representation of the environment surrounding a tumour, which the researchers have demonstrated in this study by comparing results from their 3D model with results from a 2D model.

In addition to testing if the cells remained viable, or alive, after printing, the researchers also examined how the cells proliferated, how they expressed a specific set of proteins, and how resistant they were to .

The proteins studied were part of the MMP protein family. These proteins are used by cancer cells to break through their surrounding matrix and help tumours to spread. Resistance to anti-cancer drugs, which was also studied, is a good indicator of tumour malignancy.

The results revealed that 90 per cent of the cancer cells remained viable after the printing process. The results also showed that the 3D model had more similar characteristics to a tumour compared to 2D models and in the 3D model the cancer cells showed a higher proliferation rate, higher protein expression and higher resistance to anti-cancer drugs.

The lead author of the research, Professor Wei Sun, from Tsinghua University, China, and Drexel University, USA, said: "We have provided a scalable and versatile 3D cancer model that shows a greater resemblance to natural cancer than 2D cultured cancer cells."

"With further understanding of these 3D models, we can use them to study the development, invasion, metastasis and treatment of cancer using specific from patients. We can also use these models to test the efficacy and safety of new cancer treatment therapies and new cancer drugs."

Explore further: New drug candidate starves dormant cancer cells

More information: 'Three-dimensional printing of Hela cells for cervical tumor model in vitro' Zhao Y I et al 2014 Biofabrication 6 035001. iopscience.iop.org/1758-5090/6/3/035001/article

Related Stories

New drug candidate starves dormant cancer cells

February 18, 2014
In a study published in Nature Communications, researchers at Karolinska Institutet and Uppsala University in Sweden present a new drug candidate, which selectively kills dormant cells within a cancer tumour through starvation. ...

Acidic tumour pH inhibits drug effect

February 11, 2014
Low pH in tumours counteracts the desired effect of the drug chloroquine, according to a new study from Karolinska Institutet in Sweden. The results, which are published in the journal Autophagy, might explain possible lack ...

Cancer cells don't take 'drunken' walks through the body

March 11, 2014
Because of results seen in flat lab dishes, biologists have believed that cancers cells move through the body in a slow, aimless fashion, resembling an intoxicated person who cannot walk three steps in a straight line. This ...

Breaking down cancer's defense mechanisms

December 20, 2013
A possible new method for treating pancreatic cancer which enables the body's immune system to attack and kill cancer cells has been developed by researchers.

Researchers develop novel 3-D culture system for inflammatory breast cancer

December 9, 2012
Inflammatory breast cancer (IBC) is a very rare and aggressive disease that progresses rapidly and is associated with a very low survival rate. To understand how this type of cancer spreads, it's crucial to characterize the ...

How tumors become resistant to drugs, and how process can be reversed to inhibit cancer growth

April 10, 2014
Researchers at the Hebrew University of Jerusalem's Faculty of Medicine have discovered a process whereby tumor cells become resistant to specific drugs, a finding that could significantly influence how anti-cancer drugs ...

Recommended for you

Scientists produce human intestinal lining that re-creates living tissue inside organ-chip

February 16, 2018
Investigators have demonstrated how cells of a human intestinal lining created outside an individual's body mirror living tissue when placed inside microengineered Intestine-Chips, opening the door to personalized testing ...

Data wave hits health care

February 16, 2018
Technology used by Facebook, Google and Amazon to turn spoken language into text, recognize faces and target advertising could help doctors fight one of the deadliest infections in American hospitals.

Researcher explains how statistics, neuroscience improve anesthesiology

February 16, 2018
It's intuitive that anesthesia operates in the brain, but the standard protocol among anesthesiologists when monitoring and dosing patients during surgery is to rely on indirect signs of arousal like movement, and changes ...

Team reports progress in pursuit of sickle cell cure

February 16, 2018
Scientists have successfully used gene editing to repair 20 to 40 percent of stem and progenitor cells taken from the peripheral blood of patients with sickle cell disease, according to Rice University bioengineer Gang Bao.

Appetite-controlling molecule could prevent 'rebound' weight gain after dieting

February 15, 2018
Scientists have revealed how mice control their appetite when under stress such as cold temperatures and starvation, according to a new study by Monash University and St Vincent's Institute in Melbourne. The results shed ...

First study of radiation exposure in human gut Organ Chip device offers hope for better radioprotective drugs

February 14, 2018
Chernobyl. Three Mile Island. Fukushima. Accidents at nuclear power plants can potentially cause massive destruction and expose workers and civilians to dangerous levels of radiation that lead to cancerous genetic mutations ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.