New imaging technique pinpoints changes in brain connectivity following mTBI

June 10, 2015
Credit: Mary Ann Liebert, Inc., publishers

A new imaging technique can identify the specific changes in neural communication that can disrupt functional connectivity across the brain as a result of mild traumatic brain injury (mTBI). This information could help explain why many patients with a diagnosis of mTBI will experience physical, cognitive, and psychosocial symptoms that may persist, according to an article published in Brain Connectivity.

Chandler Sours, Haoxing Chen, Steven Roys, Jiachen Zhuo, Amitabh Varshney, and Rao Gullapalli, University of Maryland School of Medicine and the Magnetic Resonance Research Center (Baltimore, MD) and University of Maryland College Park describe their innovative approach to the advanced imaging technique called resting state functional magnetic resonance imaging (rs-fMRI). Instead of relying on a single frequency range to analyze in the brain, the researchers measured multiple frequency ranges using a technique known as discrete wavelength decomposition.

The article "Investigation of Multiple Frequency Ranges Using Discrete Wavelet Decomposition of Resting State Functional Connectivity in Mild Traumatic Brain Injury Patients" reports the differences in the strength and variability of communication across neural networks in the brains of patients diagnosed with mTBI who did or did not have post-concussive syndrome. The authors demonstrate alterations in functional connectivity in both groups of patients during the acute and chronic stages of injury, differences between the two groups, and recovery of connectivity over time.

"The consequences of head injury are difficult to detect with conventional CT and MRI diagnostic methods. This is especially true in the weeks to months following the traumatic event," says Christopher Pawela, PhD, Co-Editor-in-Chief of Brain Connectivity and Assistant Professor, Medical College of Wisconsin. "Dr. Sours and her colleagues are on the forefront of developing a new MRI technique to pinpoint brain injury in the critical window after the traumatic event has occurred."

Explore further: Epilepsy alters organization of brain networks and functional efficiency

More information: The article is available free on the Brain Connectivity website until July 10, 2015.

Related Stories

Epilepsy alters organization of brain networks and functional efficiency

April 29, 2015
Epilepsy, a disorder characterized by abnormal neuronal activity in certain regions of the brain, leads to organizational changes that can alter brain efficiency at the level of the whole brain. This occurs across functional ...

MRI shows brain disruption in patients with post-concussion syndrome

November 21, 2012
MRI shows changes in the brains of people with post-concussion syndrome (PCS), according to a new study published online in the journal Radiology. Researchers hope the results point the way to improved detection and treatment ...

Brain connectivity disrupted in patients with post-concussive syndrome

July 26, 2011
A new study has found that patients with mild traumatic brain injury (MTBI) exhibit abnormal functional connectivity in the thalamus, a centrally located relay station for transmitting information throughout the brain. The ...

New MRI technique helps clinicians better predict outcomes following mild traumatic brain injury

September 17, 2014
Diffusion Tensor Imaging (DTI), a specialized magnetic resonance imaging (MRI) technique that detects microstructural changes in brain tissue, can help physicians better predict the likelihood for poor clinical outcomes following ...

Brain abnormalities found among those experiencing blast-related mild traumatic brain injury

April 22, 2015
Individuals with mild Traumatic Brain Injury (mTBI), particularly those who have had loss of consciousness (LOC), show structural brain abnormalities in their white matter as measured by Diffusion Tensor Imaging (DTI).

Insulin increases resting-state functional connectivity in T2DM

September 30, 2014
(HealthDay)—For older adults with type 2 diabetes, a single dose of intranasal insulin increases resting-state brain functional connectivity, according to a study published online Sept. 23 in Diabetes.

Recommended for you

Gene immunotherapy protects against multiple sclerosis in mice

September 21, 2017
A potent and long-lasting gene immunotherapy approach prevents and reverses symptoms of multiple sclerosis in mice, according to a study published September 21st in the journal Molecular Therapy. Multiple sclerosis is an ...

Neuron types in brain are defined by gene activity shaping their communication patterns

September 21, 2017
In a major step forward in research, scientists at Cold Spring Harbor Laboratory (CSHL) today publish in Cell a discovery about the molecular-genetic basis of neuronal cell types. Neurons are the basic building blocks that ...

Highly precise wiring in the cerebral cortex

September 21, 2017
Our brains house extremely complex neuronal circuits whose detailed structures are still largely unknown. This is especially true for the cerebral cortex of mammals, where, among other things, vision, thoughts or spatial ...

Your neurons register familiar faces, whether you notice them or not

September 21, 2017
When people see an image of a person they recognize—the famous tennis player Roger Federer or actress Halle Berry, for instance—particular cells light up in the brain. Now, researchers reporting in Current Biology on ...

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

September 20, 2017
As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors - the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions ...

Strategy might prevent infections in patients with spinal cord injuries

September 19, 2017
New research led by The Ohio State University Wexner Medical Center found a potential therapeutic strategy to prevent infections in patients with spinal cord injuries.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.