New immunoregulation and biomarker

June 12, 2015, Ludwig Maximilian University of Munich
New immunoregulation and biomarker
Credit: Juan-Gärtner / Fotolia.com

Clinicians at LMU have elucidated a mechanism involved in determining the lifespan of antibody-producing cells, and identified a promising new biomarker for monitoring autoimmune diseases like multiple sclerosis and lupus erythematosus.

The so-called humoral immune response is mediated by and plays a central role in combating infections. Plasma cells secrete antibodies – a class of proteins that specifically recognize infectious pathogens and facilitate their destruction. Individual plasma cells make only a single species of antibody that normally recognizes a single structure. Nevertheless, antibodies with certain specificities may erroneously attack the tissues of their host, causing such as multiple sclerosis (MS) or (SLE). "Balanced regulation of the production and activity of plasma cells is therefore vital," says Professor Edgar Meinl (LMU Medical Center). Long-term antibody-mediated immunity is provided by so-called long-lived plasma cells, and Meinl and his research team have now identified a novel mechanism involved in regulating the lifespan of these antibody producing cells. This involves the shedding of a particular cell-surface receptor, named BCMA, which is known to bind factors that promote plasma-cell survival. The released segment that is cut off the receptor can be detected in the circulation, and the LMU group has shown that it provides a useful biomarker for monitoring the severity of autoimmune conditions. The new findings appear in the online journal "Nature Communications".

Protease g-secretase truncates receptor

Plasma cells develop from progenitors called B-cells that carry specific membrane-bound receptors which recognize foreign proteins termed antigens. When a B cell encounters its cognate antigen, it differentiates into a clone of plasma cells that secrete the antigen-binding protein in soluble form as antibody. How long an antibody-producing plasma cell survives in the body depends largely on the survival receptor BCMA.

When the BCMA binds its ligands, the survival factors BAFF and APRIL, a genetic program is activated which effectively extends the lifespan of the plasma cell. "However, the lifetime of plasma cells cannot be prolonged indefinitely. Otherwise the organism would become swamped with antibodies, increasing the risk of an autoimmune reaction," Meinl explains. "We have now shown, in cooperation with colleagues in Munich, Berlin and Stockholm, that the membrane-bound enzyme gamma-secretase acts as a brake on immune reactions by fragmenting BCMA."

As a so-called transmembrane receptor, BCMA extends through the cell membrane and projects into the extracellular medium. Gamma-secretase removes the exposed portion by cutting the protein inside of the plasma membrane. That this enzyme cleaves the receptor directly was a surprise: "Up to now, it was only known to be involved in the degradation of membrane proteins that had already been cleaved by other enzymes. "BCMA is the first natural substrate of gamma-secretase to be identified that is directly cleaved by the enzyme," says Meinl, "and probably reflects the fact that the extracellular segment of the receptor is unusually short."

Informative immunological indicator

The cleaved fragment is stable, and can be detected in body fluids as soluble BCMA (sBCMA). Analysis of clinical samples from patients with multiple sclerosis or lupus erythematosus has indicated that the molecule could provide a useful biomarker for autoimmune disease. Lupus is a systemic condition which affects the whole organism. In lupus patients, levels of sBCMA in the blood were found to be abnormally high – and were correlated with the severity of the disease. Multiple sclerosis is an organ-specific disease, which targets the central nervous system. "Correspondingly, in MS patients sBCMA levels were increased specifically in the cerebrospinal fluid, which bathes the brain and the spinal cord," says Meinl. "So, sBCMA is an indicator of the intensity of ongoing immune reactions. sBCMA is therefore well suited to serve as an informative clinical parameter for the assessment of the therapeutic effects of different treatment regimes on plasma cells."

These findings could facilitate the development of optimized and personalized modes of therapy. Both B cells and the BCMA/BAFF/APRIL system constitute promising targets for the treatment of lupus and , as blocking their activity could inhibit the production of the autoimmune antibodies. In the case of lupus, an agent directed against BAFF has already been approved for clinical use. Unfortunately, for unknown reasons, it is effective in only a subset of patients. Further clinical studies on agents that target BAFF, APRIL and their receptors are currently underway. In future, sBCMA could be used to measure and optimize the impact not only of these new therapies but also of already proven treatments, since it enables one to monitor the levels of plasma cells.

Explore further: Breakthrough opens door to safer lupus drugs

More information: "γ-secretase directly sheds the survival receptor BCMA from plasma cells" Nature Communications 6, Article number: 7333 DOI: 10.1038/ncomms8333

Related Stories

Breakthrough opens door to safer lupus drugs

May 14, 2015
A ground-breaking discovery by Monash University researchers could revolutionise treatments given to lupus sufferers, saving thousands of people each year from serious illness or death caused by secondary infections.

Learning how a key protein affects programmed cell death could help to develop vaccines and drugs

April 30, 2015
A*STAR researchers have clarified the role of one particular regulatory protein in controlling the development of plasma cells, opening up several new avenues toward clinical applications.

Understanding and improving the body's fight against pathogens

September 1, 2014
Scientists from A*STAR's Bioprocessing Technology Institute (BTI) have uncovered the crucial role of two signalling molecules, DOK3 and SHP1, in the development and production of plasma cells. These discoveries, published ...

A trigger that likely unleashes autoimmune disease

May 12, 2015
Australian researchers believe they have discovered a group of cells that trigger autoimmune disease, as well as the molecular 'trigger guard' that normally holds them in check.

Shp1 protein helps immune system develop its long-term memory

March 18, 2015
A protein called Shp1 is vital to the immune system's ability to remember infections and fight them off when they reappear, researchers at A*STAR have found.

Study reveals how a Rab protein controls HIV-1 replication

May 4, 2015
HIV-1 replication requires the coordinated movement of the virus's components toward the plasma membrane of an immune cell, where the virions are assembled and ultimately released. A study in The Journal of Cell Biology reveals ...

Recommended for you

Human immune 'trigger' map paves way for better treatments

June 21, 2018
A discovery about how human cells are 'triggered' to undergo an inflammatory type of cell death could have implications for treating cancer, stroke and tissue injury, and immune disorders.

Fetal T cells are first responders to infection in adults

June 20, 2018
Cornell University researchers have discovered there is a division of labor among immune cells that fight invading pathogens in the body.

How a thieving transcription factor dominates the genome

June 20, 2018
One powerful DNA-binding protein, the transcription factor PU.1, steals away other transcription factors and recruits them for its own purposes, effectively dominating gene regulation in developing immune cells, according ...

Severe stress may send immune system into overdrive

June 19, 2018
(HealthDay)—Trauma or intense stress may up your odds of developing an autoimmune disease, a new study suggests.

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.