Researchers find new method to halt the advance of liver cancer

July 24, 2015, Sanford-Burnham Medical Research Institute

A new study by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP), the National Cancer Institute, and the Chulabhorn Research Institute has found that blocking the activity of a key immune receptor, the lymphotoxin-beta receptor (LTβR), reduces the progression of liver cancer. The results, published today in the online edition of Gut, could provide new treatment strategies for the disease, which is the third leading cause of cancer-related deaths worldwide.

"Our findings point to a new way to improve the treatment of patients," said Carl Ware, Ph.D., professor and director in the Infectious and Inflammatory Disease Center at SBP and one of theauthors of the paper. "Combining drugs that are currently in clinical trials, which block the activity of the LTβR with drugs that target oncogene signals, may be a valuable new approach to improving patient outcomes."

The LTβR, originally discovered by Ware, is best known for controlling the development of lymphoid organs, supporting the body's immune response to pathogens, and regulating inflammation. His work has led to the understanding that blocking the activity of the receptor inhibits inflammation. This approach is currently studied as a treatment for chronic inflammatory diseases, including Sjögren's syndrome.

"For some time we have known about the interconnection between the receptor, inflammation—including inflammation caused by hepatitis—and liver cancer. Now, we have demonstrated how the receptor's signals create an environment that accelerates oncogenic activity and tumor growth," added Ware.

Working with Robert Wiltrout, Ph.D., and Anthony Scarzello in the Cancer and Inflammation Program at the National Cancer Institute, the research team introduced the liver cancer-causing AKT/β-catenin or AKT/Notch oncogenes to mice and then monitored liver cancer progression after administration of either a LTβR activator (agonist) or an inhibitor (antagonist). In mice that received the agonist, rapidly proliferated and progressed. In contrast, mice that received the antagonist experienced reduced tumor progression and enhanced survival.

Importantly, the research team found that LTβR levels were elevated in human liver cancer cell lines, reflecting the need for enhanced receptor activity to maintain oncogene activity. Similarly, higher levels of the receptor correlated with poor survival in patients with intrahepatic cholangiocarcinoma, the second most common type of liver tumor.

"Cancers of the hepatobiliary system, including cholangiocarcinoma and hepatocellular carcinoma, typically present in advanced stages, with impaired liver function, respond poorly to chemotherapy, and have poor survival based on the lack of available treatment options," said Paul Timothy Fanta, M.D., associate clinical professor in the Division of Hematology and Oncology at UC San Diego's Moores Cancer Center."

"The present study describes interactions of the LTβR, a member of the (TNF) superfamily of receptors and may play a key role in tumor formation through LTβR inflammation-mediated events and actions through AKT/Beta-catenin and Notch cellular pathways. The link between LTβR signaling and oncogenic activation suggests that drugs targeting LTβR signaling combined with AKT or Notch inhibitors may lead to rationally designed therapeutic trials in these underserved and lethal diseases," added Fanta.

Explore further: Study uncovers genetic driver of inflammation, uses it to prevent and treat liver cancer

Related Stories

Study uncovers genetic driver of inflammation, uses it to prevent and treat liver cancer

September 23, 2014
Inflammation has been shown to be a driving force behind many chronic diseases, especially liver cancer, which often develops due to chronic inflammation caused by conditions such as viral hepatitis or alcoholism and has ...

Researchers find link between cancer gene and obesity

July 17, 2015
Virginia Commonwealth University Massey Cancer Center researchers have discovered that a gene known to cause cancer also may play a role in determining if someone becomes obese.

A cell-surface protein overexpressed in liver cancer offers a promising target for therapy

June 10, 2015
Patients with cancer of the liver express elevated levels of Agrin, a specific protein which aids the growth and spread of the cancer, according to new research from A*STAR scientists. The protein could be an attractive target ...

How cancer tricks the lymphatic system into spreading tumors

May 11, 2015
Swollen lymph nodes are often the earliest sign of metastatic spread of cancer cells. Now cancer researchers and immunologists at Sweden's Karolinska Institutet have discovered how cancer cells can infiltrate the lymphatic ...

Peeking into the genome of a deadly cancer pinpoints possible new treatment

July 14, 2015
Small cell lung cancer is one of the most deadly kinds of cancers. Typically this aggressive disease is diagnosed fairly late in its course, and the survival rates are so dismal that doctors are reluctant to even subject ...

Yin and yang: Immune signaling protein has opposing roles in breast cancer development

June 8, 2015
Countering previously held beliefs, researchers at the University of Texas MD Anderson Cancer Center have discovered that inhibiting the immune receptor protein TLR4 may not be a wise treatment strategy in all cancers. This ...

Recommended for you

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.