Improving treatment for systemic amyloidosis

July 16, 2015, University College London
Improving treatment for systemic amyloidosis

A potential new approach to treat systemic amyloidosis, invented at UCL and being developed by GlaxoSmithKline (GSK), marks the start of a successful and innovative academic-industry collaboration.

The first in human clinical trial of a novel investigational drug intervention for patients with systemic amyloidosis has established proof of mechanism. Results in the first 15 patients treated with a therapeutic partnership of a small chemical molecule and a large biological molecule (an antibody) are published in the New England Journal of Medicine. Further clinical testing is in progress and a phase II trial to explore efficacy and safety is planned.

Amyloid is an material that accumulates in the tissues, damaging their structure and function and causing a serious and usually fatal disease called systemic amyloidosis. It is a rare disease but an important unmet medical need. Present treatments can stabilise some patients and substantially prolong life but about 20% of patients still die within 6 months of diagnosis.

The body is normally very efficient in clearing abnormal debris from the tissues but, mysteriously, this does not happen with amyloid deposits. Even when amyloid formation is controlled, the deposits are cleared very slowly if at all.

No approved treatments exist to accelerate amyloid removal. New approaches are thus urgently needed.

The results of the phase I study published online today showed that the antibody was generally well tolerated and produced swift clearance of amyloid from various organs. Removal of amyloid from the liver was associated with improved function. More extended follow up is required to establish functional improvement in other organs.

Professor Sir Mark Pepys FRS, Director of the UCL Wolfson Drug Discovery Unit, said: "Amyloidosis is a very challenging clinical condition. It causes serious ill health and is usually fatal, despite best efforts to support the patients and to control the underlying conditions responsible for amyloid formation. Furthermore amyloidosis can present in so many different ways that, coupled with its relative rarity, the diagnosis is often long delayed. As a result patients frequently have advanced disease before they receive any treatment. We have long recognised that measures to remove amyloid from the tissues are required and have been working on this problem for over 30 years. We were finally successful for the first time in experimental models 10 years ago. The collaboration with GSK started in 2009 and it has been a privilege to work with their expertise and resources to bring our approach into clinical testing. Seeing clearance of amyloid deposits from patients' tissues has been thrilling. It is a crucial first step on the long path towards having a medicine that could transform the outlook for people suffering from this terrible disease."

Dr Duncan Richards, Head of GSK's Academic Discovery Performance Unit, said: "Establishing proof of mechanism is a vital milestone that needs to be determined early in the path of developing a medicine so we are pleased to have this confirmed for the first time in patients. The initial results of the therapeutic intervention of CPHPC and the anti-SAP antibody are encouraging and we are now actively planning the next stages of development to better understand its potential benefits and safety in patients."

Professor Sir Mark Pepys FRS and his team in the Wolfson Drug Discovery Unit at the Royal Free Campus of UCL, have been working on amyloidosis since 1974. Their innovations in diagnosis and monitoring of amyloidosis led to establishment of the UK NHS National Amyloidosis Centre at the Royal Free Hospital in 1999. The Centre is funded directly by the Department of Health to provide diagnostic and management advice services for all patients with this disease in the UK. Some 4,000 patients visit the Centre annually, including about 1,000 newly diagnosed patients. This is probably about half the total number of amyloidosis in the UK.

In 2005 Pepys devised a novel strategy for amyloid removal comprising the partnership between a small chemical molecule drug and a large biological molecule

He originally developed the small molecule drug, called CPHPC, to remove a normal blood protein, called serum amyloid P component (SAP), from amyloid deposits. SAP is always present in amyloid and Pepys thought that removing it completely would help the body to get rid of the deposits. Although CPHPC treatment efficiently removes almost all the SAP from the blood it does not remove all the SAP from amyloid. Patients on CPHPC remained clinically stable but their amyloid deposits did not disappear. However, the prior administration of CPHPC uniquely enables subsequent administration of antibody to SAP that specifically targets the . This approach worked well in experimental models. It successfully triggers normal mechanisms of debris clearance to efficiently remove amyloid from the tissues and restore their structure and function.

Explore further: Amyloid imaging shows promise for detecting cardiac amyloidosis

More information: "Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component." DOI: 10.1056/NEJMoa1504942

Related Stories

Amyloid imaging shows promise for detecting cardiac amyloidosis

February 4, 2013
While amyloid imaging may now be most associated with detecting plaques in the brain, it has the potential to change the way cardiac amyloidosis is diagnosed. According to first-of-its-kind research published in the February ...

Amyloid scan of the heart predicts major cardiac events

June 8, 2015
Amyloid build-up is commonly talked about in relation to Alzheimer's disease, but amyloidosis can be found throughout the body. An excessive accumulation of these insoluble proteins could cause a heart attack or even death. ...

Amyloid formation may link Alzheimer disease and type 2 diabetes

February 17, 2015
The pathological process amyloidosis, in which misfolded proteins (amyloids) form insoluble fibril deposits, occurs in many diseases, including Alzheimer disease (AD) and type 2 diabetes mellitus (T2D). However, little is ...

A DNA-made trap may explain amyloidosis aggravation

October 9, 2012
Amyloidosis is a group of clinical syndromes characterized by deposits of amyloid fibrils throughout the body. These fibrils are formed by aggregates of proteins that have not been properly folded. Deposits of amyloid fibrils ...

Recommended for you

Lung-on-a-chip simulates pulmonary fibrosis

May 25, 2018
Developing new medicines to treat pulmonary fibrosis, one of the most common and serious forms of lung disease, is not easy.

Reconstructing Zika's spread

May 24, 2018
The urgent threat from Zika virus, which dominated news headlines in the spring and summer of 2016, has passed for now. But research into how Zika and other mosquito-borne infections spread and cause epidemics is still very ...

Tick bite protection: New CDC study adds to the promise of permethrin-treated clothing

May 24, 2018
The case for permethrin-treated clothing to prevent tick bites keeps getting stronger.

Molecular network boosts drug resistance and virulence in hospital-acquired bacterium

May 24, 2018
In response to antibiotics, a gene regulation network found in the bacterium Acinetobacter baumannii acts to boost both virulence and antibiotic resistance. Edward Geisinger of Tufts University School of Medicine and colleagues ...

Past use of disinfectants and PPE for Ebola could inform future outbreaks

May 24, 2018
Data from the 2014 Ebola virus outbreak at two Sierra Leone facilities reveal daily usage rates for disinfectant and personal protective equipment, informing future outbreaks, according to a study published May 24, 2018 in ...

Early lactate measurements appear to improve results for septic patients

May 24, 2018
On October 1, 2015, the United States Centers for Medicare and Medicaid Services (CMS) issued a bundle of recommendations defining optimal treatment of patients suffering from sepsis, a life-threatening response to infection ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.