A DNA-made trap may explain amyloidosis aggravation

October 9, 2012

Amyloidosis is a group of clinical syndromes characterized by deposits of amyloid fibrils throughout the body. These fibrils are formed by aggregates of proteins that have not been properly folded. Deposits of amyloid fibrils are found in a number of diseases, including Alzheimer's and Parkinson's diseases and type-2 diabetes. The amyloid deposits can be localized, as in the brain of Alzheimer's patients, or found spread through the body, as in amyloidosis related to mutations in the transthyretin gene.

The clinical meaning of is still poorly understood. Whereas in some patients these deposits are asymptomatic and found only by chance, in others they can damage multiple and be lethal. Previous research has suggested that what turns these apparently harmless amyloid fibrils into deadly toxic species is their breaking down into smaller pieces. How this process takes place and the identity of the key players involved are crucial questions to which a new study led by Dr Debora Foguel at the Medical Biochemistry Institute at the Federal University of Rio de Janeiro, in Brazil, provides enlightening answers.

It has been known for some time that amyloid fibrils trigger an inflammatory response, suggesting the involvement of the immune system in amyloidosis. In a paper to be published in print in November in the , the group led by Dr Debora Foguel asked whether this would involve neutrophils, the that first reach a damaged site.

Neutrophils protect our body against microbes by releasing, at the site of infection, a DNA-made trap rich in nuclear and antimicrobial proteins, a process known as NETosis. Once caught by this neutrophil extracellular trap (NET) microbes are trapped and killed by NET components such as e enzymes. New evidence provided by Dr Foguel's research shows that not only microbes but also amyloid fibrils can induce the release of NETs. NETs are also found at the sites of amyloid deposits in the tissues of amyloidosis patients. The study strongly indicates that amyloid fibrils are caught by NETs, which break them down into smaller fragments, mainly through the action of specific enzymes. As a side-product of this process, smaller toxic fragments that are harmful to the cells are generated.

"Our study provides the first evidence of a physiological mechanism leading to fibril fragmentation and aggravation of the disease. Thus, amyloid fibrils could be considered as a reservoir of small, ," says Dr Foguel. The study entitled "Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase" also shows that the extent of NET induction by amyloidosis differs among patients, which may further explain the great variability observed among amyloidosis patients.

NETs are physiologically destroyed by special enzymes capable of digesting DNA, the so-called DNAses. Indeed, some pathogens escape NETs by releasing their own DNAses when trapped. A question now remains whether amyloidosis patients are somehow incapable of disassembling these NETs when they are no longer needed, allowing them free rein and the breakdown of the amyloid into smaller toxic pieces.

The study's results have clear implications for the etiology of , an often-deadly disease against which little progress has been made in recent years.

Explore further: Amyloid beta in the brain of individuals with Alzheimer's disease

More information: www.jbc.org/content/early/2012 … 369942.full.pdf+html

Related Stories

Amyloid beta in the brain of individuals with Alzheimer's disease

March 30, 2012
While there may not be a consensus whether deposition of amyloid beta contributes to Alzheimer's disease or is a consequence of it, there is agreement that something else is promoting the process. Other proteins are often ...

Recommended for you

Female mouse embryos actively remove male reproductive systems

August 17, 2017
A protein called COUP-TFII determines whether a mouse embryo develops a male reproductive tract, according to researchers at the National Institutes of Health and their colleagues at Baylor College of Medicine, Houston. The ...

New Pathology Atlas maps genes in cancer to accelerate progress in personalized medicine

August 17, 2017
A new Pathology Atlas is launched today with an analysis of all human genes in all major cancers showing the consequence of their corresponding protein levels for overall patient survival. The difference in expression patterns ...

Two-step process leads to cell immortalization and cancer

August 17, 2017
A mutation that helps make cells immortal is critical to the development of a tumor, but new research at the University of California, Berkeley suggests that becoming immortal is a more complicated process than originally ...

New technique overcomes genetic cause of infertility

August 17, 2017
Scientists have created healthy offspring from genetically infertile male mice, offering a potential new approach to tackling a common genetic cause of human infertility.

Inhibiting a protein found to reduce progression of Alzheimer's and ALS in mice

August 17, 2017
(Medical Xpress)—A team of researchers with Genetech Inc. and universities in Hamburg and San Francisco has found that inhibiting the creation of a protein leads to a reduction in the progression of Alzheimer's disease ...

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.