In first, scientists use sound waves to control brain cells

September 15, 2015, Salk Institute
For the first time, sound waves are used to control brain cells. Salk scientists developed the new technique, dubbed sonogenetics, to selectively and noninvasively turn on groups of neurons in worms that could be a boon to science and medicine. Credit: Salk Institute

Salk scientists have developed a new way to selectively activate brain, heart, muscle and other cells using ultrasonic waves. The new technique, dubbed sonogenetics, has some similarities to the burgeoning use of light to activate cells in order to better understand the brain.

This new method—which uses the same type of waves used in medical sonograms—may have advantages over the light-based approach—known as optogenetics—particularly when it comes to adapting the technology to human therapeutics. It was described September 15, 2015 in the journal Nature Communications.

"Light-based techniques are great for some uses and I think we're going to continue to see developments on that front," says Sreekanth Chalasani, an assistant professor in Salk's Molecular Neurobiology Laboratory and senior author of the study. "But this is a new, additional tool to manipulate neurons and other in the body."

In optogenetics, researchers add light-sensitive channel proteins to neurons they wish to study. By shining a focused laser on the cells, they can selectively open these channels, either activating or silencing the target neurons. But using an optogenetics approach on cells deep in the brain is difficult: typically, researchers have to perform surgery to implant a that can reach the cells. Plus, light is scattered by the brain and by other tissues in the body.

Chalasani and his group decided to see if they could develop an approach that instead relied on ultrasound waves for the activation. "In contrast to light, low-frequency ultrasound can travel through the body without any scattering," he says. "This could be a big advantage when you want to stimulate a region deep in the brain without affecting other regions," adds Stuart Ibsen, a postdoctoral fellow in the Chalasani lab and first author of the new work.

A new technique to selectively and noninvasively turn on groups of neurons in worms could be boon to science and medicine. Credit: Salk Institute

Chalasani and his colleagues first showed that, in the nematode Caenorhabditis elegans, microbubbles of gas outside of the worm were necessary to amplify the low-intensity . "The microbubbles grow and shrink in tune with the ultrasound pressure waves," Ibsen says. "These oscillations can then propagate noninvasively into the worm."

Next, they found a membrane ion channel, TRP-4, which can respond to these waves. When mechanical deformations from the ultrasound hitting gas bubbles propagate into the worm, they cause TRP-4 channels to open up and activate the cell. Armed with that knowledge, the team tried adding the TRP-4 channel to neurons that don't normally have it. With this approach, they successfully activated neurons that don't usually react to ultrasound.

So far, sonogenetics has only been applied to C. elegans neurons. But TRP-4 could be added to any calcium-sensitive cell type in any organism including humans, Chalasani says. Then, microbubbles could be injected into the bloodstream, and distributed throughout the body—an approach already used in some human imaging techniques. Ultrasound could then noninvasively reach any tissue of interest, including the brain, be amplified by the microbubbles, and activate the cells of interest through TRP-4. And many cells in the human body, he points out, can respond to the influxes of calcium caused by TRP-4.

"The real prize will be to see whether this could work in a mammalian ," Chalasani says. His group has already begun testing the approach in mice. "When we make the leap into therapies for humans, I think we have a better shot with noninvasive sonogenetics approaches than with optogenetics."

Both optogenetics and sonogenetics approaches, he adds, hold promise in basic research by letting scientists study the effect of cell activation. And they also may be useful in therapeutics through the activation of cells affected by disease. However, for either technique to be used in humans, researchers first need to develop safe ways to deliver the light or ultrasound-sensitive channels to target cells.

Explore further: Light-sensitive protein from a fungus expands the optogenetic toolkit

Related Stories

Light-sensitive protein from a fungus expands the optogenetic toolkit

September 14, 2015
Optogenetics is a quickly expanding field of research which has revolutionized neurobiological and cellbiological research around the world. It uses natural or tailored light-sensitive proteins in order to switch nerve cells ...

Optogenetics captures neuronal transmission in live mammalian brain

December 24, 2014
Swiss scientists have used a cutting-edge method to stimulate neurons with light. They have successfully recorded synaptic transmission between neurons in a live animal for the first time.

Researchers study alcohol addiction using optogenetics

December 16, 2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

Revolutionizing the revolutionary technology of optogenetics

July 16, 2015
The revolution that optogenetics technology has brought to biology—neuroscience in particular—could be transformed all over again if a new project getting underway at Brown University and Central Michigan University (CMU) ...

Recommended for you

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

When there's an audience, people's performance improves

April 20, 2018
Often, people think performing in front of others will make them mess up, but a new study led by a Johns Hopkins University neuroscientist found the opposite: being watched makes people do better.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

MRI technique detects spinal cord changes in MS patients

April 20, 2018
A Vanderbilt University Medical Center-led research team has shown that magnetic resonance imaging (MRI) can detect changes in resting-state spinal cord function in patients with multiple sclerosis (MS).

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.