In first, scientists use sound waves to control brain cells

September 15, 2015
For the first time, sound waves are used to control brain cells. Salk scientists developed the new technique, dubbed sonogenetics, to selectively and noninvasively turn on groups of neurons in worms that could be a boon to science and medicine. Credit: Salk Institute

Salk scientists have developed a new way to selectively activate brain, heart, muscle and other cells using ultrasonic waves. The new technique, dubbed sonogenetics, has some similarities to the burgeoning use of light to activate cells in order to better understand the brain.

This new method—which uses the same type of waves used in medical sonograms—may have advantages over the light-based approach—known as optogenetics—particularly when it comes to adapting the technology to human therapeutics. It was described September 15, 2015 in the journal Nature Communications.

"Light-based techniques are great for some uses and I think we're going to continue to see developments on that front," says Sreekanth Chalasani, an assistant professor in Salk's Molecular Neurobiology Laboratory and senior author of the study. "But this is a new, additional tool to manipulate neurons and other in the body."

In optogenetics, researchers add light-sensitive channel proteins to neurons they wish to study. By shining a focused laser on the cells, they can selectively open these channels, either activating or silencing the target neurons. But using an optogenetics approach on cells deep in the brain is difficult: typically, researchers have to perform surgery to implant a that can reach the cells. Plus, light is scattered by the brain and by other tissues in the body.

Chalasani and his group decided to see if they could develop an approach that instead relied on ultrasound waves for the activation. "In contrast to light, low-frequency ultrasound can travel through the body without any scattering," he says. "This could be a big advantage when you want to stimulate a region deep in the brain without affecting other regions," adds Stuart Ibsen, a postdoctoral fellow in the Chalasani lab and first author of the new work.

The video will load shortly.
A new technique to selectively and noninvasively turn on groups of neurons in worms could be boon to science and medicine. Credit: Salk Institute

Chalasani and his colleagues first showed that, in the nematode Caenorhabditis elegans, microbubbles of gas outside of the worm were necessary to amplify the low-intensity . "The microbubbles grow and shrink in tune with the ultrasound pressure waves," Ibsen says. "These oscillations can then propagate noninvasively into the worm."

Next, they found a membrane ion channel, TRP-4, which can respond to these waves. When mechanical deformations from the ultrasound hitting gas bubbles propagate into the worm, they cause TRP-4 channels to open up and activate the cell. Armed with that knowledge, the team tried adding the TRP-4 channel to neurons that don't normally have it. With this approach, they successfully activated neurons that don't usually react to ultrasound.

So far, sonogenetics has only been applied to C. elegans neurons. But TRP-4 could be added to any calcium-sensitive cell type in any organism including humans, Chalasani says. Then, microbubbles could be injected into the bloodstream, and distributed throughout the body—an approach already used in some human imaging techniques. Ultrasound could then noninvasively reach any tissue of interest, including the brain, be amplified by the microbubbles, and activate the cells of interest through TRP-4. And many cells in the human body, he points out, can respond to the influxes of calcium caused by TRP-4.

"The real prize will be to see whether this could work in a mammalian ," Chalasani says. His group has already begun testing the approach in mice. "When we make the leap into therapies for humans, I think we have a better shot with noninvasive sonogenetics approaches than with optogenetics."

Both optogenetics and sonogenetics approaches, he adds, hold promise in basic research by letting scientists study the effect of cell activation. And they also may be useful in therapeutics through the activation of cells affected by disease. However, for either technique to be used in humans, researchers first need to develop safe ways to deliver the light or ultrasound-sensitive channels to target cells.

Explore further: Light-sensitive protein from a fungus expands the optogenetic toolkit

Related Stories

Light-sensitive protein from a fungus expands the optogenetic toolkit

September 14, 2015
Optogenetics is a quickly expanding field of research which has revolutionized neurobiological and cellbiological research around the world. It uses natural or tailored light-sensitive proteins in order to switch nerve cells ...

Optogenetics captures neuronal transmission in live mammalian brain

December 24, 2014
Swiss scientists have used a cutting-edge method to stimulate neurons with light. They have successfully recorded synaptic transmission between neurons in a live animal for the first time.

Researchers study alcohol addiction using optogenetics

December 16, 2013
Wake Forest Baptist Medical Center researchers are gaining a better understanding of the neurochemical basis of addiction with a new technology called optogenetics.

Revolutionizing the revolutionary technology of optogenetics

July 16, 2015
The revolution that optogenetics technology has brought to biology—neuroscience in particular—could be transformed all over again if a new project getting underway at Brown University and Central Michigan University (CMU) ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

How we recall the past: Neuroscientists discover a brain circuit dedicated to retrieving memories

August 17, 2017
When we have a new experience, the memory of that event is stored in a neural circuit that connects several parts of the hippocampus and other brain structures. Each cluster of neurons may store different aspects of the memory, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.