Researcher develops light-based tools to study the brain

October 16, 2015

When the brain is at work, large numbers of neurons within it interact rapidly, passing messages, sometimes across large distances. The most recent addition to Rockefeller University's faculty, Alipasha Vaziri, devises optical tools for capturing and manipulating these interactions to create dynamic maps of neural network activity. Vaziri's appointment to tenure-track associate professor was made in September and his laboratory will relocate to Rockefeller next year.

Working at the interface of physics and biology, Vaziri has developed a portfolio of light-based techniques that make it possible to interrogate within the living brain.

"Because neurons share many connections, our challenge is to image as many of them as possible on physiologically relevant time scales while observing individual cells—requirements that have been quite difficult to satisfy simultaneously," Vaziri says. "By developing 'tricks' that combine physical properties of light, molecular information, and computational approaches we have been able to accomplish all three things at once."

Physics meets neuroscience

Vaziri earned a Ph.D. in , a field of physics that focuses on some of the counterintuitive properties of photons, the units of light, from the University of Vienna, in Austria, and conducted his postdoctoral work at the U.S. National Institutes of Standards and Technology. Later, he became interested in neuroscience and joined the Howard Hughes Medical Institute's Janelia Research Campus as a research specialist.

"I have always been most fascinated by fundamental questions; that was the reason I studied physics and went into quantum mechanics. In the early part of my career, I was looking for new challenges and I realized that understanding the brain represented something fundamental and challenging, yet also tangible," Vaziri says. "I hoped that, as a physicist, I could contribute new conceptual ideas and bring in techniques to address key limitations in our understanding of brain function."

Innovative imaging approaches

While on the faculty at the University of Vienna and the Research Institute for Molecular Pathology (IMP), his most recent position, Vaziri put his background to use developing new ways to peer into the brain. One of these, called wide-field, two-photon light sculpting, makes it possible to simultaneously record many individual signals produced by densely packed neurons. Light sculpting employs a femtosecond pulsed laser source whose spectrum is dispersed, then brought back into register to generate a disk of light that illuminates many neurons only within a single plane, but not those above or below. In addition to observing the neurons, the researchers can activate them using optogenetics, a method that employs light to activate or inhibit genetically altered neurons. The Vaziri lab has developed variations on this approach that allow for single-cell resolution activation of neurons in specific spatiotemporal patterns.

Vaziri and his colleagues have also developed a second technique, light-field deconvolution microscopy, which uses views formed by an array of micron-sized lenses to generate a three-dimensional representation of neural activity at high speed across an even larger area, up to the entire brain of small organisms. Using this technique the researchers could capture the neuronal activity within a roundworm's full 302-neuron brain during free behavior as well capture the whole-organ activity of the larger and more complex brain of zebra fish larvae. In this latter case, they were able to track how thousands of neurons responded when the fish was exposed to odor stimuli.

The Vaziri lab at Rockefeller

So far, these techniques have been used only in smaller, simpler brains. But at Rockefeller, Vaziri hopes to adapt them for use in rodents and other mammalian systems. And, by capturing every signal within an animal's brain during an experiment, he anticipates being able to investigate the neural mechanics underlying decision-making and other complex functions. His lab will also explore new ways of applying quantum optics tools to address biological questions.

"Alipasha brings with him enormous technical expertise in the field of light-based imaging, and his presence will contribute greatly to the university's intellectual depth by reinforcing connections between our physicists and neurobiologists," says Marc Tessier-Lavigne, the university's president. "His plans to continue developing and applying his inventive approaches will ultimately lead to new insights into the organization and function of the ."

Explore further: Capturing brain activity with sculpted light

Related Stories

Capturing brain activity with sculpted light

September 9, 2013
Scientists at the Campus Vienna Biocenter (Austria) have found a way to overcome some of the limitations of light microscopy. Applying the new technique, they can record the activity of a worm's brain with high temporal ...

Illuminating neuron activity in 3-D

May 18, 2014
Researchers at MIT and the University of Vienna have created an imaging system that reveals neural activity throughout the brains of living animals. This technique, the first that can generate 3-D movies of entire brains ...

Optogenetics captures neuronal transmission in live mammalian brain

December 24, 2014
Swiss scientists have used a cutting-edge method to stimulate neurons with light. They have successfully recorded synaptic transmission between neurons in a live animal for the first time.

Recording the entire nervous system in real time will unlock secrets of the brain

August 12, 2015
There are around 100 billion neurons in the human brain, each connected to hundreds of neighbours. Analysing the link between neural activity in the brain, and the behaviour that causes it, could shed light on both areas. ...

New optoelectronic probe enables communication with neural microcircuits

October 12, 2015
Brown University researchers have created a new type of optoelectronic implantable device to access brain microcircuits, synergizing a technique that enables scientists to control the activity of brains cells using pulses ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.