Diet lacking soluble fiber promotes weight gain, mouse study suggests

November 2, 2015

Eating too much high-fat, high-calorie food is considered the primary cause of obesity and obesity-related disease, including diabetes. While the excess calories consumed are a direct cause of the fat accumulation, scientists suspect that low-grade inflammation due to an altered gut microbiome may also be involved. A new study in the American Journal of PhysiologyGastrointestinal and Liver Physiology finds in mice that a diet missing soluble fiber promotes inflammation in the intestines and poor gut health, leading to weight gain. Moreover, incorporating soluble fiber back into the diet can restore gut health.

The microbiota is a community of bacteria and other microorganisms that live in the intestines. Microbiota also exists elsewhere on the body, including the skin and mouth. The gut microbiota has an important role in maintaining intestinal health and function, including helping the body digest food, producing vitamins and fighting foreign microorganisms. Changes to the gut microbiota have been linked to development of gastrointestinal diseases, including inflammatory bowel disease, and metabolic diseases, including type 2 diabetes and obesity.

A research team at Georgia State University examined the effects of diets varying in amounts of soluble and insoluble fibers, protein and fat on the structure of the intestines, and weight gain in mice. Key observations from this study are:

  • Mice on a lacking soluble fiber gained weight and had more fat compared with mice on a diet that included soluble fiber. The intestines of mice on the soluble fiber-deficient diet were also shorter and had thinner walls. These structural changes were observed as soon as two days after starting the diet.
  • Introducing soluble fiber into the diet restored gut structure. Supplementing with soluble fiber inulin restored the intestinal structure in mice on the soluble fiber-deficient diet. Mice that received cellulose, an insoluble fiber, however, did not show improvements. Moreover, in mice fed a high-fat diet, switching the type of fiber from insoluble to soluble protected the mice from the fat accumulation and intestinal wasting that occurs with excess fat consumption. The data suggest a difference in health benefits between soluble and insoluble dietary fibers, the researchers stated.
  • Improvements in gut structure with soluble fiber were due to changes in the gut microbiota and the gut microbiota's production of molecules called short chain fatty acids, which are used as fuel by intestinal cells and have anti-inflammatory properties. Mice consuming a soluble fiber-deficient diet had lower levels of short chain fatty acids, and introducing soluble fiber into their diet boosted their levels. Supplementing the soluble fiber-deficient diet with short chain fatty acids had similar effects as inulin supplementation, although not to the same extent. Inulin supplementation increased the size of the intestines in normal mice but not in with no gut microbiota, supporting that the gut microbiota is involved in the intestinal health effects of soluble fiber. According to the researchers, the data support that soluble fiber promotes gut health by encouraging the to produce short chain fatty acids.

"If our observations were to prove applicable to humans, it would suggest that encouraging consumption of foods with high content may be a means to combat the epidemic of metabolic disease. Moreover, addition of inulin and perhaps other soluble fibers to processed foods, including calorically rich obesogenic foods, may be a means to ameliorate their detrimental effects," the researchers stated.

Explore further: Gut bacteria could be blamed for obesity and diabetes

More information: Benoit Chassaing et al. Lack of soluble fiber drives diet-induced adiposity in mice, American Journal of Physiology - Gastrointestinal and Liver Physiology (2015). DOI: 10.1152/ajpgi.00172.2015

Related Stories

Gut bacteria could be blamed for obesity and diabetes

October 29, 2015
An excess of bacteria in the gut can change the way the liver processes fat and could lead to the development of metabolic syndrome, according to health researchers.

Fish oil-diet benefits may be mediated by gut microbes

August 27, 2015
Diets rich in fish oil versus diets rich in lard (e.g., bacon) produce very different bacteria in the guts of mice, reports a study published August 27 in Cell Metabolism. The researchers transferred these microbes into other ...

Dietary fat impacts autoimmune flare-ups in mice

October 20, 2015
Dietary fat may impact the severity and duration of autoimmune flare-ups, suggests a study published on October 20 in the journal Immunity. Adjusting the length of fatty acids consumed by mice altered the function of T helper ...

High-fat diet alters behavior and produces signs of brain inflammation

March 26, 2015
Can the consumption of fatty foods change your behavior and your brain?

Dietary fiber alters gut bacteria, supports gastrointestinal health

June 27, 2012
A University of Illinois study shows that dietary fiber promotes a shift in the gut toward different types of beneficial bacteria. And the microbes that live in the gut, scientists now believe, can support a healthy gastrointestinal ...

High dietary fiber intake linked to health promoting short chain fatty acids

September 28, 2015
Eating a lot of fibre-rich foods, such as fruit, vegetables, and legumes—typical of a Mediterranean diet—is linked to a rise in health promoting short chain fatty acids, finds research published online in the journal ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.