Zebrafish reveal how axons regenerate on a proper path

November 5, 2015, University of Pennsylvania School of Medicine
Back (green) and abdominal (magenta) peripheral nerve axons in zebrafish. Credit: Michael Granato, PhD, Lab, Perelman School of Medicine, University of Pennsylvania

When peripheral nerves are damaged and their vital synaptic paths are disrupted, they have the ability to regenerate and reestablish lost connections. But what about when a nerve is severed completely, its original route lost? How does a regenerating axon, looking to reconnect with its proper target—with so many possibilities and only one correct path to restore original functioning—know which way to go? Using a transparent zebrafish model, researchers from the Perelman School of Medicine at the University of Pennsylvania, have identified key components of a mechanism that allows the nervous system to heal itself. Their work was published online this week in Neuron ahead of the print issue.

"It's been known for over one hundred years that can regenerate," said senior author Michael Granato, PhD, a professor of Cell and Developmental Biology. However, the mechanics of regeneration, including the question of whether the restoration of axonal branches is random or guided in some way, have remained unresolved issues, partly because of the difficulty of observing the process in live animals. Using zebrafish, which are transparent at larval stages, Granato and his colleagues were able to literally obtain a whole new window into how regenerate.

"What really made the difference is the ability to visualize these nerves before and after they were completely cut," he explained. "In no other vertebrate system can you do that, so you can't really be sure what is going on. For example, in a mouse, you basically have to sacrifice the animal and look at what happened after the injury. You don't know how the situation was before, so you have to extrapolate and make assumptions."

The researchers used fluorescent proteins to label back and abdominal peripheral nerve axons to observe regeneration after nerves were transected by a laser. They found that as regenerating axonal growth cones reach a branch point at which they have to 'choose' to go one way or the other, they will explore both the correct and incorrect paths, but only the proper path will be supported by components of the extracellular matrix (ECM). The ECM is a mix of substances, including collagen, carbohydrates, and fluid, produced by cells and secreted into the environment around them. Cells are embedded in the ECM and it can affect their behavior. In the case of regenerating neuron axons, the ECM keeps axons from 'choosing' incorrect paths and tilts the balance toward the correct growth direction.

The team next investigated the ECM factors that influence this selective regeneration. "The system is heavily influenced by a genetic pathway that starts with the expression of a particular collagen in ," said Granato. "The glial cells that are close to an injury site start expressing the collagen gene 4a5, which has to be modified by a particular enzyme called lh3 to be secreted into the extracellular space."

Collagen 4a5 and the axonal repellent protein Slit1 are strongly upregulated after nerve injury and form a complex. The cells in which the collagen and slit1a are upregulated are along the wrong pathway. They form a barrier because collagen will anchor slit1, present it to the axons, which have the receptor for slit1, and that makes them turn away or stop growing, thereby promoting the regeneration of axons toward their proper paths and towards their original targets. "The specificity really comes from slit1 and its receptor," Granato explained. He also noted that the same genes are conserved in other vertebrates, including humans.

These experiments are an important step in understanding peripheral nerve regeneration, establishing that it is decidedly not a random process but is controlled by particular genetic pathways. The researchers plan to delve further into the specific mechanisms at work, including the possibility that different nerve cell extensions, such as axons, may control regeneration in separate areas.

"This pathway is highly specific for only the dorsal nerve branch," Granato pointed out. "If we transect the ventral nerves, they are completely unaffected by this . The questions are: Where does this specificity come from? Why are some axons responding to this pathway and others are not? That's basically what's next for us; we want to find out how the specificity is achieved."

While any prospects for clinical applications are still in the future, the work points to some important new research directions. "It tells us there are pathways that we, at some point, will be able to take advantage of to really properly direct axons to regenerate nerves," Granato noted. "Even knowing that in theory one can do that, because there are genes for it, is a significant finding."

Explore further: Glial cells assist in the repair of injured nerves

Related Stories

Glial cells assist in the repair of injured nerves

January 28, 2013
When a nerve is damaged, glial cells produce the protein neuregulin1 and thereby promote the regeneration of nerve tissue.

New approach to spinal cord and brain injury research

July 15, 2015
Many an injury will heal, but the damaged spinal cord is notoriously recalcitrant. There's new hope on the horizon, though. A team of researchers led by the University of South Carolina's Jeff Twiss just reported an innate ...

Master gene orchestrates regeneration of damaged peripheral nerves​

October 30, 2015
One of the big challenges with spinal cord injuries is that spinal cord neurons don't have the ability to regrow after an injury. That's why most spinal paralysis in patients is permanent.

Dental pulp cell transplants help regenerate peripheral nerves

July 6, 2015
Peripheral nerve injuries often are caused by trauma or surgical complications and can result in considerable disabilities. Regeneration of peripheral nerves can be accomplished effectively using autologous (self-donated) ...

Researchers identify protein required to regrow injured nerves in limbs

June 20, 2012
A protein required to regrow injured peripheral nerves has been identified by researchers at Washington University School of Medicine in St. Louis.

Researchers compare neurons in optic nerves to find why some regenerate and others don't

May 5, 2015
It's a question that seems to offer tantalizing hope to those suffering from vision impairment. Why is it that when the optic nerve is damaged—either through trauma or disease—few of its neurons survive and fewer still ...

Recommended for you

A peek into the interplay between sleep and wakefulness

July 20, 2018
Sleep is an autonomic process and is not always under our direct, voluntary control. Awake or asleep, we are basically under the regulation of two biological processes: sleep homeostasis, commonly known as 'sleep pressure', ...

Paralyzed mice with spinal cord injury made to walk again

July 19, 2018
Most people with spinal cord injury are paralyzed from the injury site down, even when the cord isn't completely severed. Why don't the spared portions of the spinal cord keep working? Researchers at Boston Children's Hospital ...

Neural inflammation plays critical role in stress-induced depression

July 19, 2018
A group of Japanese researchers has discovered that neural inflammation caused by the innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development ...

Scientists uncover the role of a protein in production and survival of myelin-forming cells

July 19, 2018
The nervous system is a complex organ that relies on a variety of biological players to ensure daily function of the human body. Myelin—a membrane produced by specialized glial cells—plays a critical role in protecting ...

Understanding the neuroscience of binge drinking

July 19, 2018
A new study from researchers at Columbia University Irving Medical Center found that binge drinking impairs working memory in the adolescent brain. The study, in mice, explains why teenagers who binge drink are 15 times more ...

Neurons can carry more than one signal at a time

July 18, 2018
Back in the early days of telecommunications, engineers devised a clever way to send multiple telephone calls through a single wire at the same time. Called time-division multiplexing, this technique rapidly switches between ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Nov 05, 2015
Take 20 Zebrafish.
Remove as usual.
Take a Syringe & draw the stuff every 3 days in one zebra fish after the other. See the difference in the stuff!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.