Immune suppressor cells identified for advanced prostate cancer

December 21, 2015, University of Texas M. D. Anderson Cancer Center
Micrograph showing prostatic acinar adenocarcinoma (the most common form of prostate cancer) Credit: Wikipedia

Immune suppressor cells called MDSCs (myeloid-derived suppressor cells) may be important in developing treatments for advanced prostate cancer, according to a study at The University of Texas MD Anderson Cancer Center.

MDSCs are immune cells that "expand" when faced with , inflammation or infections, giving them the unique ability to suppress the body's T-cell response to disease.

"The microenvironment is made up of a mixture of fibroblasts, infiltrating immune cells and other cells, proteins and signaling molecules," said Y. Alan Wang, Ph.D., associate professor of Cancer Biology. "MDSCs are infiltrating that promote tumors through their striking lack of immunological response."

Wang and fellow scientists Ronald A. DePinho, M.D., professor of Cancer Biology, and president of MD Anderson, Xin Lu, Ph.D., instructor, and Guocan Wang, Ph.D., postdoctoral fellow, both of Cancer Biology were co-authors on a paper about the study's finding, which was published in the Dec. 20, 2015 online issue of Cancer Discovery.

Many previous studies have demonstrated a direct tie between MDSC and tumors, yet understanding of MDSC's role in tumor progress, particularly in , has remained largely speculative.

Using a novel prostate cancer mouse model and patient tumor samples, Wang's and DePinho's team showed that depletion of MDSCs suppresses tumor progression. In addition, they also revealed that a cell signaling pathway called Hippo-Yap1 regulated the protein Cxcl5 which was identified as a cancer-secreted chemokine that attracted or "recruited" MDSCs which expressed another protein, Cxcr2. The team was able to show that by blocking the Cxcr2 proteins with small molecule inhibitors, tumor progress was impeded. They also demonstrated that silencing of Yap1 expression in established tumors led to a reduction in MDSC infiltration and inhibition of tumor growth.

"Pharmacologic elimination of MDSCs or blockage of the Cxcl5-Cxcr2 signaling pathway resulted in robust anti-tumor response in vivo and prolonged survival," said DePinho. "The targeting of either MDSC recruitment or infiltrated MDSCs may represent a valid therapeutic opportunity in treating advanced prostate cancer."

Wang believes that further studies are needed, which may include combining MDSC inactivation with immunotherapy, including immune checkpoint inhibitors such as anti-CTLA4, anti PD1 and anti-PD-L1 antibodies.

Explore further: Scientists discover potential new target for cancer immunotherapy

Related Stories

Scientists discover potential new target for cancer immunotherapy

May 25, 2014
Scientists have found a way to target elusive cells that suppress immune response, depleting them with peptides that spare other important cells and shrink tumors in preclinical experiments, according to a paper published ...

Research findings reveal that tumors promote myeloid-derived suppressor cell accumulation through IRF-8 loss

September 17, 2013
(Medical Xpress)—Researchers at Roswell Park Cancer Institute (RPCI) have uncovered a new pathway by which cancer cells, such as in breast cancer, stimulate the expansion of myeloid-derived suppressor cells (MDSCs), a blood ...

Study finds potential key to immune suppression in cancer

January 19, 2012
In a study investigating immune response in cancer, researchers from Moffitt Cancer Center in Tampa, Fla., and the University of South Florida have found that interaction between the immune system's antigen-specific CD4 T ...

Study finds key link responsible for colon cancer initiation and metastasis

November 11, 2013
Chronic inflammation has long been known as a key risk factor for cancer—-particularly colon cancer—-but the exact mechanisms of how inflammation heightens the immune response, and ultimately influences the initiation ...

Researchers say silencing of retinoblastoma gene regulates differentiation of myeloid cells

February 19, 2013
Researchers at the Moffitt Cancer Center have found a potential mechanism by which immune suppressive myeloid-derived suppressor cells can prevent immune response from developing in cancer. This mechanism includes silencing ...

Blood vessel cells help tumours evade the immune system

August 24, 2015
A study by researchers at Sweden's Karolinska Institutet is the first to suggest that cells in the tumour blood vessels contribute to a local environment that protects the cancer cells from tumour-killing immune cells. The ...

Recommended for you

Technology used to map Mars now measuring effect of treatment on tumours

April 24, 2018
A machine learning approach for assessing images of the craters and dunes of Mars, which was developed at The University of Manchester, has now been adapted to help scientists measure the effects of treatments on tumours.

New test could tell doctors whether patients will respond to chemotherapy

April 24, 2018
Less than half the patients diagnosed with cancer respond favorably to chemotherapy, but a new method for testing how patients will respond to various drugs could pave the way for more personalized treatment.

Scientists create better laboratory tools to study cancer's spread

April 23, 2018
Cancer that has spread, or metastasized, from its original site to other tissues and organs in the body is a leading cause of cancer death. Unfortunately, research focused on metastatic disease has been limited by a lack ...

The role of 'extra' DNA in cancer evolution and therapy resistance

April 23, 2018
Glioblastoma (GBM) is the most common and aggressive form of brain cancer. Response to standard-of-care treatment is poor, with a two-year survival rate of only 15 percent. Research is beginning to provide a better understanding ...

Size, structure help poziotinib pose threat to deadly exon 20 lung cancer

April 23, 2018
A drug that failed to effectively strike larger targets in lung cancer hits a bulls-eye on the smaller target presented by a previously untreatable form of the disease, researchers at The University of Texas MD Anderson Cancer ...

How to hijack degrading complexes to put cancer cells asleep

April 23, 2018
Newcastle and Dundee University researchers have uncovered an alternative path of how the breast cancer drug palbociclib drives malignant cells into cell death, senescence.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.