Why are habits so hard to break? Getting hooked changes the brain, scientists find

January 21, 2016
A highly magnified view of the striatum of a mouse brain reveals neurons involved in brain circuits that govern habits. Contrary to a traffic light, neurons in the "Go" pathway of the striatum are stained to appear red, and the stop neurons appear green. Credit: Kristen Ade, Duke University

By now, you might have discovered that taming your sweet tooth as a New Year's resolution is harder than you think.

New research by Duke University scientists suggests that a leaves a lasting mark on specific circuits in the brain, priming us to feed our cravings.

Published online Jan. 21 in the journal Neuron, the research deepens scientists' understanding of how habits like sugar and other vices manifest in the brain and suggests new strategies for breaking them.

"One day, we may be able to target these circuits in people to help promote habits that we want and kick out those that we don't want," said the study's senior investigator Nicole Calakos, M.D., Ph.D., an associate professor of neurology and neurobiology at the Duke University Medical Center.

Calakos, an expert in the brain's adaptability, teamed up with Henry Yin, an expert in animal models of habit behavior in Duke's department of psychology and neuroscience. Both scientists are also members of the Duke Institute for Brain Sciences.

Their groups trained otherwise healthy to form sugar habits of varying severity, a process that entailed pressing a lever to receive tiny sweets. The animals that became hooked kept pressing the lever even after the treats were removed.

The researchers then compared the brains of mice that had formed a habit to the ones that didn't. In particular, the team studied electrical activity in the , a complex network of brain areas that controls motor actions and compulsive behaviors, including drug addiction.

In the basal ganglia, two main types of paths carry opposing messages: One carries a 'go' signal which spurs an action, the other a 'stop' signal.

Experiments by Duke neurobiology graduate student Justin O'Hare found that the stop and go pathways were both more active in the sugar-habit mice. O'Hare said he didn't expect to see the stop signal equally ramped up in the habit brains, because it has been traditionally viewed as the factor that helps prevent a behavior.

The team also discovered a change in the timing of activation in the two pathways. In mice that had formed a habit, the go pathway turned on before the stop pathway. In non-habit brains, the stop signal preceded the go.

These changes in the brain circuitry were so long-lasting and obvious that it was possible for the group to predict which mice had formed a habit just by looking at isolated pieces of their brains in a petri dish.

Scientists have previously noted that these opposing basal ganglia pathways seem to be in a race, though no one has shown that a habit gives the go pathway a head start. O'Hare said that's because the go and stop signals had not been studied in the same brain at the same time. But new labeling strategies used by the Duke scientists allowed researchers to measure activity across dozens of neurons in both pathways simultaneously, in the same animal.

"The go pathway's head start makes sense," said Calakos. "It could prime the animal to be more likely to engage in the behavior." The researchers are testing this idea, as well as investigating how the rearrangements in activity occur in the first place.

Interestingly, the group observed that changes in go and stop activity occurred across the entire region of the basal ganglia they were studying as opposed to specific subsets of brain cells. O'Hare said this may relate to the observation that an addiction to one thing can make a person more likely to engage in other unhealthy habits or addictions as well.

To see if they could break a habit, the researchers encouraged the mice to change their habit by rewarding them only if they stopped pressing the lever. The mice that were the most successful at quitting had weaker go cells. But how this might translate into help for humans with bad habits is still unclear. Because the basal ganglia is involved in a broad array of functions, it may be tricky to target with medicines.

Calakos said some researchers are beginning to explore the possibility of treating using transcranial magnetic stimulation or TMS, a noninvasive technique that uses magnetic pulses to stimulate the brain. "TMS is an inroad to access these circuits in more severe diseases," she said, in particular targeting the cortex, a area that serves as the main input to the basal ganglia.

For more ordinary bad habits "simpler, behavioral strategies many of us try may also tap into similar mechanisms," Calakos added. "It may be just a matter of figuring out which of them are the most effective."

Meanwhile, Calakos and her team are studying what distinguishes ordinary habits from the problematic ones that can be seen in conditions like obsessive-compulsive disorder.

Explore further: When good habits go bad: Neuroscientist seeks roots of obsessive behavior, motion disorders

More information: Pathway-Specific Striatal Substrates for Habitual Behavior, Justin K. O'Hare, Kristen K. Ade, Tatyana Sukharnikova, Stephen D. Van Hooser, Henry H. Yin, Nicole Calakos. Neuron, January 21, 2016. DOI: 10.1016/j.neuron.2015.12.032

Related Stories

When good habits go bad: Neuroscientist seeks roots of obsessive behavior, motion disorders

February 16, 2013
Learning, memory and habits are encoded in the strength of connections between neurons in the brain, the synapses. These connections aren't meant to be fixed, they're changeable, or plastic.

How does the brain create sequences?

January 26, 2014
When you learn how to play the piano, first you have to learn notes, scales and chords and only then will you be able to play a piece of music. The same principle applies to speech and to reading, where instead of scales ...

Habit formation is enabled by gateway to brain cells

December 21, 2011
A brain cell type found where habits are formed and movement is controlled has receptors that work like computer processors to translate regular activities into habits, researchers report.

Breaking habits before they start

June 27, 2013
Our daily routines can become so ingrained that we perform them automatically, such as taking the same route to work every day. Some behaviors, such as smoking or biting your fingernails, become so habitual that we can't ...

OCD patients' brains light up to reveal how compulsive habits develop

December 19, 2014
Misfiring of the brain's control system might underpin compulsions in obsessive-compulsive disorder (OCD), according to researchers at the University of Cambridge, writing in the American Journal of Psychiatry.

Researchers discover neurons in the brain that weigh costs and benefits to drive formation of habits

August 20, 2015
We are creatures of habit, nearly mindlessly executing routine after routine. Some habits we feel good about; others, less so. Habits are, after all, thought to be driven by reward-seeking mechanisms that are built into the ...

Recommended for you

The neural codes for body movements

July 21, 2017
A small patch of neurons in the brain can encode the movements of many body parts, according to researchers in the laboratory of Caltech's Richard Andersen, James G. Boswell Professor of Neuroscience, Tianqiao and Chrissy ...

Faulty support cells disrupt communication in brains of people with schizophrenia

July 20, 2017
New research has identified the culprit behind the wiring problems in the brains of people with schizophrenia. When researchers transplanted human brain cells generated from individuals diagnosed with childhood-onset schizophrenia ...

Scientists reveal how patterns of brain activity direct specific body movements

July 20, 2017
New research by Columbia scientists offers fresh insight into how the brain tells the body to move, from simple behaviors like walking, to trained movements that may take years to master. The discovery in mice advances knowledge ...

Scientists discover combined sensory map for heat, humidity in fly brain

July 20, 2017
Northwestern University neuroscientists now can visualize how fruit flies sense and process humidity and temperature together through a "sensory map" within their brains, according to new research.

Team traces masculinization in mice to estrogen receptor in inhibitory neurons

July 20, 2017
Researchers at Cold Spring Harbor Laboratory (CSHL) have opened a black box in the brain whose contents explain one of the remarkable yet mysterious facts of life.

Speech language therapy delivered through the Internet leads to similar improvements as in-person treatment

July 20, 2017
Telerehabilitation helps healthcare professionals reach more patients in need, but some worry it doesn't offer the same quality of care as in-person treatment. This isn't the case, according to recent research by Baycrest.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.