Study targets SGEF protein in treating glioblastoma brain tumors

January 13, 2016
Dr. Nhan Tran, is Associate Professor and head of TGen's Central Nervous System Tumor Research Lab and the study's senior author. Credit: TGen

The Translational Genomics Research Institute (TGen) has identified a protein called SGEF that promotes the survival of glioblastoma tumor cells and helps the cancer invade brain tissue.

TGen researchers identified SGEF as a target for new brain cancer therapies in a study published today by Molecular Cancer Research, a journal of the American Association for Cancer Research, the world's largest professional organization dedicated to advancing .

Glioblastoma multiforme, or GBM, is the most common primary tumor of the brain and central nervous system. One of the primary treatments for glioblastoma is surgical removal of the tumor. However, because of the aggressive way glioblastomas invade surrounding , it is impossible to remove all parts of the tumors, and the cancer eventually returns and spreads.

This study found that SGEF also plays a role in how glioblastoma tumors develop resistance to treatment. Following surgery, GBM is treated with radiation and the standard-of-care chemotherapy drug called temozolomide (TMZ),

"We need to identify the genetic and cellular-pathway signaling mechanisms that make resistant to treatment," said Dr. Nhan Tran, Associate Professor and head of TGen's Central Nervous System Tumor Research Lab. "And the role of SGEF in promoting chemotherapeutic resistance highlights this previously unappreciated protein. Importantly, this also suggests that SGEF could be a new candidate for development of targeted therapeutics," said Dr. Tran, the study's senior author.

This study was funded, in part, by The Ben & Catherine Ivy Foundation.

"Contributing to the progress, TGen studies are helping uncover the mysteries behind glioblastoma," said Catherine (Bracken) Ivy, founder and president of the Arizona-based Ben & Catherine Ivy Foundation. "This research is fundamental to helping patients survive longer and critical to our goal of improving treatments, and eventually finding a cure."

The ability of cancer cells to survive is influenced by the proteins that regulate cellular pathways involved in promoting how cells grow, replicate and spread, as well as whether cells will die when exposed to anti-cancer drugs. Radiation and drug treatment of GBM can lead to DNA damage. This study shows that SGEF promotes cancer cell survival in response to TMZ treatment by allowing tumor cells to rapidly repair the damaged DNA that otherwise would lead to cell death.

"Our study shows that SGEF may have an important role in helping cells survive injury—known as the pro-survival cellular signaling response—including injury to common drugs used to treat brain such as TMZ," said Dr. Shannon Fortin Ensign, the study's lead author.

"The roles of invasion and survival are interconnected in the promotion of disease progression," said Dr. Fortin Ensign, a former researcher at TGen who now is a resident in Internal Medicine at Scripps Green Hospital in La Jolla, Calif. "SGEF presents a novel hub in the interrelated axes of tumor cell invasion and survival."

The study, SGEF is Regulated via TWEAK/Fn14/NF-κB Signaling and Promotes Survival by Modulation of the DNA Repair Response to Temozolomide, was published online today by AACR's Molecular Cancer Research.

Explore further: Team identifies drug that could limit the spread of deadly brain tumors

Related Stories

Team identifies drug that could limit the spread of deadly brain tumors

November 12, 2015
In a significant breakthrough, the Translational Genomics Research Institute (TGen) has identified a drug, propentofylline or PPF, that could help treat patients with deadly brain cancer.

New release of Glioblastoma Atlas sheds light on deadly disease

May 14, 2015
Robust new data added to the Ivy Glioblastoma Atlas Project (Ivy GAP) changes the scope and impact of this publicly available resource for researchers and clinicians searching for treatments for this most deadly and aggressive ...

Scientists find key driver for treatment of deadly brain cancer

January 8, 2016
Glioblastoma multiforme is a particularly deadly cancer. A person diagnosed with this type of brain tumor typically survives 15 months, if given the best care. The late Senator Ted Kennedy succumbed to this disease in just ...

Study identifies key protein that helps prevent lung cancer tumors from being destroyed

March 4, 2014
(Medical Xpress)—Researchers at the Translational Genomics Research Institute (TGen) have discovered a protein, Mcl-1, that helps enable one of the most common and deadly types of cancer to survive radiation and drug treatments.

Glioblastoma: Study ties three genes to radiation resistance in recurrent tumors

February 3, 2015
A new study identifies three genes that together enable a lethal form of brain cancer to recur and progress after radiation therapy.

Study provides comprehensive look at brain cancer treatments

May 1, 2015
Led by the Translational Genomics Research Institute (TGen) and UC San Francisco (UCSF), a comprehensive genetic review of treatment strategies for glioblastoma brain tumors was published today in the Oxford University Press ...

Recommended for you

Researchers identify gene variants linked to a high-risk children's cancer

September 25, 2017
Pediatric researchers investigating the childhood cancer neuroblastoma have identified common gene variants that raise the risk of an aggressive form of that disease. The discovery may assist doctors in better diagnosing ...

Prostaglandin E1 inhibits leukemia stem cells

September 25, 2017
Two drugs, already approved for safe use in people, may be able to improve therapy for chronic myeloid leukemia (CML), a blood cancer that affects myeloid cells, according to results from a University of Iowa study in mice.

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

September 25, 2017
A new magnetic resonance imaging (MRI) contrast agent being tested by researchers at Case Western Reserve University not only pinpoints breast cancers at early stages but differentiates between aggressive and slow-growing ...

Cancer vaccines need to target T cells that can persist in the long fight against cancer

September 25, 2017
Cancer vaccines may need to better target T cells that can hold up to the long fight against cancer, scientists report.

Lung cancer treatment could be having negative health effect on hearts

September 25, 2017
Radiotherapy treatment for lung cancer could have a negative effect on the health of your heart new research has found.

Alternative splicing, an important mechanism for cancer

September 22, 2017
Cancer, which is one of the leading causes of death worldwide, arises from the disruption of essential mechanisms of the normal cell life cycle, such as replication control, DNA repair and cell death. Thanks to the advances ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.