Scientists find key driver for treatment of deadly brain cancer

January 8, 2016
Scientists find key driver for treatment of deadly brain cancer
Scientists at the Salk Institute have discovered how a protein helps glioblastoma proliferates so quickly and how to turn off this engine of tumor growth using a peptide called NBD. A tumor in an untreated mouse brain (left) grew much more than a tumor treated with the NBD peptide (right). Credit: Salk Institute

Glioblastoma multiforme is a particularly deadly cancer. A person diagnosed with this type of brain tumor typically survives 15 months, if given the best care. The late Senator Ted Kennedy succumbed to this disease in just over a year.

But scientists at the Salk Institute have discovered a key to how these tumor cells proliferate so quickly —and ways to turn this engine of tumor growth into a target for cancer treatment.

"This is a disease for which there has been practically no improvement in treatment outcome for years," said Inder Verma, professor in the Salk Institute's Laboratory of Genetics and senior author of the paper published January 8, 2016 in the journal Science Advances. "It is clear that even if a surgeon removes 99.99 percent of a glioblastoma multiforme tumor, what is left behind will come back and grow into more tumor."

To study how glioblastoma multiforme spreads, Verma's team focused on a transcription factor called nuclear factor kB (or NF-kB). A transcription factor is a protein that binds to DNA and controls the fate of gene expression for a particular set of genes. Several known factors can trigger NF-kB in a cell, including ultraviolet and ionizing radiation, immune proteins (cytokines) and DNA damage.

In the case of glioblastoma multiforme, Verma and colleagues ran a battery of tests to show how overzealous NF-kB activity pushed the cancer cells to proliferate, and how stopping NF-kB slowed cancer growth and increased survival.

Scientists Dinorah Friedmann-Morvinski and Inder Verma find key driver for treatment of deadly brain cancer. Credit: Salk Institute

"Our experiments confirmed that NF-kB is required for the cancer cell to proliferate," says Dinorah Friedmann-Morvinski, first author of the paper and currently a researcher in the department of biochemistry and molecular biology at Tel Aviv University in Israel. "But now we have finally found a way to ameliorate the tumor to increase lifespan."

Verma's team started with a mouse model of glioblastoma multiforme and used genetic tools to manipulate cells into shutting down NF-kB activity in two ways. The team ramped up the presence of a protein called IkBaM, which inhibits NF-kB activity. They also eliminated an enzyme that increases NF-kB activity. With less NF-kB activity, tumor growth slowed and mice lived significantly longer then mice whose NF-kB activity was left alone. But while these genetic experiments demonstrated the role of NF-kB in glioblastoma multiforme, they aren't a feasible treatment in humans.

"So we asked how could we manipulate the system using pharmacology rather than genetics," says Verma.

Scientists have long suspected that one reason why comes back so quickly after surgery is the so-called tumor microenvironment. In other words, a tumor changes the environment of its surroundings (nearby tissues) to make it easier for cancer cells to thrive, Verma explains.

Instead of using genetic tools, Verma and colleagues sought to treat the in a way that also changed the tumor microenvironment. The scientists fed mice a peptide (called NBD) that is known to block NF-kB activity when NF-kB is triggered by cytokines (proteins produced by the immune system). The NBD peptide easily travels across the central nervous system, and can successfully penetrate glioblastoma tumor cells. Treating mice with the NBD peptide doubled their typical survival time compared to mice that didn't get the NBD peptide.

"We could increase survival time from one month without treatment to three months with treatment," says Verma. "That's a profound increase in life expectancy, especially considering a mouse only lives for two years." Yet, while the NBD peptide kept the tumors at bay, the peptide treatment eventually causes toxicity, most likely in the liver. So researchers explored another tactic to slow NF-kB activity.

Curbing NF-kB activity can be tricky because NF-kB has many important roles: it helps regulate cell survival, inflammation and immunity among many other functions in the cell.

"The ultimate goal is to block NF-kB, but because it turns on many genes—at least 100—our aim became finding the handful of genes that directly affect tumor growth," says Verma. "Then we can be more selective in treatment."

Salk scientists tracked which genes were influenced by NF-kB and found one, Timp1, which has been previously implicated in lung cancer. Targeting the Timp1 gene in treatment also slowed and increased survival time in mice by a few months.

"In the future we want to focus on ways to reduce the toxicity of anti-NF-kB drugs," said Friedmann-Morvinski. "We may do this by specifically targeting these drugs to the , or by identifying downstream targets of the NF-kB pathway, like Timp1, that also prolong survival." Further experiments may identify treatments that target NF-kB activity in a safe, but effective way.

Explore further: Survival molecule helps cancer cells hide from the immune system

More information: "Targeting NF-κB in glioblastoma: A therapeutic approach," by D. Friedmann-Morvinski; R. Narasimamurthy et al. Science Advances, advances.sciencemag.org/content/2/1/e1501292

Related Stories

Survival molecule helps cancer cells hide from the immune system

October 7, 2014
A molecule that helps cancer cells evade programmed self-destruction, an internal source of death, might also help malignant cells hide from the immune system, an external source of death.

Researchers find new drug target for lung cancer

February 16, 2012
Drugs targeting an enzyme involved in inflammation might offer a new avenue for treating certain lung cancers, according to a new study by scientists at the Salk Institute for Biological Studies.

Cell-permeable peptide shows promise for controlling cardiovascular disease

April 17, 2013
Atherosclerosis – sometimes called "hardening of the arteries" – is a leading cause of death and morbidity in Western countries. A cell-permeable peptide containing the NF-kB nuclear localization sequence (NLS) shows ...

Researchers discover molecular link between circadian clock disturbances and inflammatory diseases

August 1, 2012
Scientists have known for some time that throwing off the body's circadian rhythm can negatively affect body chemistry. In fact, workers whose sleep-wake cycles are disrupted by night shifts are more susceptible to chronic ...

Recommended for you

Shooting the achilles heel of nervous system cancers

July 20, 2017
Virtually all cancer treatments used today also damage normal cells, causing the toxic side effects associated with cancer treatment. A cooperative research team led by researchers at Dartmouth's Norris Cotton Cancer Center ...

Molecular changes with age in normal breast tissue are linked to cancer-related changes

July 20, 2017
Several known factors are associated with a higher risk of breast cancer including increasing age, being overweight after menopause, alcohol intake, and family history. However, the underlying biologic mechanisms through ...

Immune-cell numbers predict response to combination immunotherapy in melanoma

July 20, 2017
Whether a melanoma patient will better respond to a single immunotherapy drug or two in combination depends on the abundance of certain white blood cells within their tumors, according to a new study conducted by UC San Francisco ...

Discovery could lead to better results for patients undergoing radiation

July 19, 2017
More than half of cancer patients undergo radiotherapy, in which high doses of radiation are aimed at diseased tissue to kill cancer cells. But due to a phenomenon known as radiation-induced bystander effect (RIBE), in which ...

Definitive genomic study reveals alterations driving most medulloblastoma brain tumors

July 19, 2017
The most comprehensive analysis yet of medulloblastoma has identified genomic changes responsible for more than 75 percent of the brain tumors, including two new suspected cancer genes that were found exclusively in the least ...

Novel CRISPR-Cas9 screening enables discovery of new targets to aid cancer immunotherapy

July 19, 2017
A novel screening method developed by a team at Dana-Farber/Boston Children's Cancer and Blood Disorders Center—using CRISPR-Cas9 genome editing technology to test the function of thousands of tumor genes in mice—has ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

richardnunziata
not rated yet Jan 09, 2016
" aren't a feasible treatment in humans."...because the FDA will not allow it?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.