Harnessing the power of light to fight cancer

February 4, 2016 by Christina Sumners, Texas A&M University

Immunotherapy is one of the hottest emerging areas of cancer research. After all, using the body's own cells to fight cancer can be more effective and less invasive than flooding the entire system with toxic chemicals.

Yubin Zhou, Ph.D., assistant professor at the Center for Translational Cancer Research at the Texas A&M Health Science Center Institute of Biosciences & Technology, is studying how to use to control the immune system and induce it to fight cancer.

"Although neuroscientists have been using light to stimulate neurons for years, this is the first time the technique, called optogenetics, has been used in the immune system," Zhou said. In neuroscience, the process involves genetically engineering cells to produce proteins from light-sensitive microbes and results in nerve cells that will either send—or stop sending—nerve impulses when they are exposed to a particular color of light. "Neuroscientists have learned a lot about brain circuits using the technique," Zhou said, "and now researchers in many other fields are giving it a try."

Zhou and his collaborators have modified the technique for the immune system. It wasn't easy: unlike nerve cells, don't use tiny electrical impulses to communicate. Additionally, immune cells are located deep in the and are constantly moving around, so getting the light to them can be difficult.

The development took some ingenuity and cooperation. "We collaborated with Dr. Gang Han at the University of Massachusetts Medical School who does bionanotechnology and photomedicine development," Zhou said. "Together, we were able to combine state-of-the-art optogenetic approaches with cutting edge nanotechnology." Called optogenetic immunomodulation, their method was featured in a recently published article in eLife.

"This work was driven by talented scientists in the lab: graduate students Lian He and Peng Tan and postdoctoral research fellow Guolin Ma, Ph.D.," Zhou said, "who fearlessly undertook this daunting project and overcame all the challenging obstacles to make this technique into reality."

With this method, the researchers can control the action of immune cells and "instruct" them to kill cancerous tumor cells. They use a near-infrared laser beam, which can penetrate deep—in this context, deep means a centimeter or two—into the tissue, where a nanoparticle turns the near-infrared light into blue light, and that directs the activity of genetically engineered immune cells. "We are able to wirelessly control the action of immune cells buried deep in tissue," Zhou said.

The team genetically engineered immune cells so that a calcium gate-controlling protein became light sensitive. When they are exposed to the blue light emitted by the nanoparticle, their calcium ion gates open. When the light is turned off, the gates close. More light leads to a greater flow of calcium, so the researchers are able to finely tune the calcium-dependent actions of immune cells to fight against invading pathogens or tumor cells.

When an animal tumor model was injected with both the nanoparticle and the light-sensitive genetically engineered immune cells, the near-infrared laser beam caused calcium channels to open, which boosted an immune response to aid the killing of cancer cells. "The technique reduced tumor size and metastasis, so there are lots of applications," Zhou said.

One advantage of this method is that it only activates a certain type of immune cell, the dendritic cell or T-cell, and only in one part of the body, near the draining lymph nodes or tumor, which helps cut down on the system-wide side effects often seen with chemotherapy. It's also light-tunable, non-invasive and has great temporal resolution—in other words, it can be turned on when it is needed and turned off when it is not.

The implications of the research are far-reaching. "Other scientists will likely use the technique to help them study immune, heart and other types of cells that use calcium to perform their tasks," Zhou said. "It's quite a cool technology. With these tools, we can now not only answer fundamental questions of science that we never could before but also translate it into the clinic for disease intervention."

In parallel, the Zhou lab has been applying this technique to establish a way to screen potential cancer drugs more effectively. "If successful," Zhou said, "all these efforts would remarkably improve the current cancer immunotherapies by personalizing the treatment to exactly where and when it is needed, while reducing side effects."

Explore further: Optogenetic technology developed at UMMS uses light to trigger immunotherapy

Related Stories

Optogenetic technology developed at UMMS uses light to trigger immunotherapy

January 25, 2016
A new optogenetic technology developed by scientists at the University of Massachusetts Medical School and Texas A&M Health Science Center Institute of Biosciences & Technology, called optogenetic immunomodulation, is capable ...

Researchers identify way radiation may fight cancer cells escaping immune system

February 2, 2016
A team of Georgia State University researchers is fighting cancers using a combination of therapies and recently found ways that radiation could maximize responses to novel immune-based therapeutic approaches to fight cancer.

First-ever recording of the battle between a tumor cell and an immune cell

December 9, 2015
Metastasizing cancer cells do not destroy tissue, but crawl along the paths that have already been created by blood vessels, nerve bundles and other tissues. However, immune cells that fight the cancer cells take those same ...

Cancer cells hijack glucose, alter immune cells

November 2, 2015
When cancer cells compete with immune cells for glucose, the cancer wins. As a result, the immune T cells are not healthy and don't have the weapons to kill the cancer.

Cells' lack of glucose dulls immune system's ability to fight cancers

September 25, 2015
One of scientists' great hopes in fighting cancer is the immune system. If the same cells that battle viruses and other invaders recognize a tumor as foreign, the expectation is that they should be able to attack the cancer.

A shift in energy processing pathways occurs in immune cells that tolerate pathogens

September 25, 2015
A fundamental metabolic shift in immune system cells has been identified by A*STAR researchers as responsible for whether they attack or tolerate disease recognized by our immune defenses. If the cells do not respond correctly, ...

Recommended for you

Cancer comes back all jacked up on stem cells

March 19, 2018
After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important - knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. ...

A small, daily dose of Viagra may reduce colorectal cancer risk

March 19, 2018
A small, daily dose of Viagra significantly reduces colorectal cancer risk in an animal model that is genetically predetermined to have the third leading cause of cancer death, scientists report.

Researchers create a drug to extend the lives of men with prostate cancer

March 16, 2018
Fifteen years ago, Michael Jung was already an eminent scientist when his wife asked him a question that would change his career, and extend the lives of many men with a particularly lethal form of prostate cancer.

Machine-learning algorithm used to identify specific types of brain tumors

March 15, 2018
An international team of researchers has used methylation fingerprinting data as input to a machine-learning algorithm to identify different types of brain tumors. In their paper published in the journal Nature, the team ...

Higher doses of radiation don't improve survival in prostate cancer

March 15, 2018
A new study shows that higher doses of radiation do not improve survival for many patients with prostate cancer, compared with the standard radiation treatment. The analysis, which included 104 radiation therapy oncology ...

Joint supplement speeds melanoma cell growth

March 15, 2018
Chondroitin sulfate, a dietary supplement taken to strengthen joints, can speed the growth of a type of melanoma, according to experiments conducted in cell culture and mouse models.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.