Metastasis-promoting circulating tumor cell clusters pass through capillary-sized vessels

April 18, 2016

Massachusetts General Hospital (MGH) investigators have found that circulating tumor cell (CTC) clusters—which are more efficient in spreading cancer throughout the body than are single CTCs—can pass through capillary-sized blood vessels. Their findings, which contradict the widely-held belief that CTC clusters are too large to pass through capillaries, are being published online in Proceedings of the National Academy of Sciences and suggest potential strategies to reduce clusters' metastatic potential.

"By showing that aggregates containing dozens of cancer cells can unfold to pass through capillary-sized constrictions, we've challenged the current viewpoint that distant organ metastases are 'seeded' only by individual CTCs," says Sam Au, PhD, of the MGH Center for Engineering in Medicine, lead author of the report. "This information may change the standard narrative of how metastasis initiates and allow us to devise better ways to combat it."

The enhanced ability of CTC clusters to drive metastasis has been recognized for decades and supported by recent studies from the MGH Cancer Center and elsewhere. But details of the clusters' behavior within the circulation have not been explored, and the fact that even large clusters have been found in the veins of patients' arms, far from the location of primary tumors, suggested to the investigators that clusters must be able to pass through capillaries.

To investigate this hypothesis, they developed a microfluidic device with channels that taper to widths of 5 to 10 micrometers (millionths of a meter), the same as the smallest human . In a series of experiments using CTC clusters isolated from patient blood samples, from cancer cell lines and from cultured clusters, they found that clusters of 20 cells or more were capable of passing through even the smallest constrictions in the device.

The video will load shortly.
Cells within a prostate cancer circulating tumor cell cluster unfold to pass through a capillary-sized constriction in a single-file chain. Credit: Center for Engineering in Medicine, Massachusetts General Hospital

Detailed imaging revealed that, upon encountering a constriction, CTC clusters unfold into a series of single cells, like beads on a chain, and pass through in single file. On the other side of the constriction, the cells spontaneously refold into a , which appears to be undamaged and retains its ability to proliferate. Within constrictions, cells stay connected to each other by means of pre-existing cell-to-cell interactions within clusters, with the strongest contacts probably being maintained while the weaker connections are temporarily lost.

The speed with which clusters pass through a constriction depends on the size of the largest cell, not the overall size of the cluster. Although treating samples of CTC clusters from patients with factors known to disrupt cellular adhesion, including the chemotherapy drug paclitaxel, does not immediately change the form or viability of clusters, the treated clusters do not reassemble after passing through a constriction, and the cellular chains break apart into single cells or smaller aggregates.

To examine the behavior of CTC clusters in the blood vessels of live animals, the researchers used embryonic zebrafish, which have major blood vessels the size of human capillaries and are transparent, making it easy to observe the passage of labeled CTC clusters. Just as within the microfluidic constriction device, human CTC clusters pass through larger and smaller vessels in the same sort of single-file configuration as within the device and then reassemble.

"Since how clusters behave at constrictions depends on how strongly the cells adhere to each other, if we can change that strength - either by breaking clusters up into individuals cells or preventing them from unfolding, we might be able to control their ability to pass through narrow vessels," says Au, who is a research fellow in the MGH Department of Surgery.

Mehmet Toner, PhD, director of the BioMicroElectroMechanical Systems Resource Center in the MGH Department of Surgery and senior author of the PNAS report, adds, "Among the things we need to investigate now are which adhesion molecules are most important to this process, exactly how clusters reform themselves - either repairing broken adhesions or forming new ones - after exiting constrictions, and whether the forces exerted on clusters as they pass through capillaries contribute to their metastatic potential. If we can develop ways of impeding that passage, we might be able to reduce the chance of metastasis, which is the leading cause of cancer death."

Explore further: Circulating tumor cell clusters more likely to cause metastasis than single cells

More information: Clusters of circulating tumor cells traverse capillary-sized vessels, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1524448113

Related Stories

Circulating tumor cell clusters more likely to cause metastasis than single cells

August 28, 2014
Circulating tumor cell (CTC) clusters – clumps of from 2 to 50 tumor cells that break off a primary tumor and are carried through the bloodstream – appear to be much more likely to cause metastasis than are single CTCs, ...

New device successfully captures metastasis-associated circulating tumor cell clusters

May 18, 2015
The latest version of a microfluidic device for capturing rare circulating tumor cells (CTCs) is the first designed specifically to capture clusters of two or more cells, rather than single cells. The new device called the ...

Newly discovered clues to the cause of chemoresistance in small cell lung cancer

April 4, 2016
Small cell lung cancer is not usually detected until it is at an advanced stage, when metastases have already formed. Chemotherapy is very effective initially but, within a year, cancer recurs and this time does not respond ...

Researchers isolate cells implicated with breast cancer-derived brain tumors

December 3, 2015
Researchers from the Houston Methodist Research Institute have isolated genetic signatures of some circulating tumor cells (CTCs) found in breast cancer, which one day may lead to a preventive treatment for metastatic cancer ...

Recommended for you

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Age and gut bacteria contribute to multiple sclerosis disease progression

November 17, 2017
Researchers at Rutgers Robert Wood Johnson Medical School published a study suggesting that gut bacteria at young age can contribute to multiple sclerosis (MS) disease onset and progression.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

Ancient enzyme could boost power of liquid biopsies to detect and profile cancers

November 16, 2017
Scientists are developing a set of medical tests called liquid biopsies that can rapidly detect the presence of cancers, infectious diseases and other conditions from only a small blood sample. Researchers at The University ...

FDA to crack down on risky stem cell offerings

November 16, 2017
U.S. health authorities announced plans Thursday to crack down on doctors pushing stem cell procedures that pose the gravest risks to patients amid an effort to police a burgeoning medical field that previously has received ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.