Neuroscientists discover new learning rule for pattern completion

May 13, 2016
Neuroscientists have discovered a new learning rule for pattern completion. Credit: (c) IST Austria

"Fire together, wire together" is the famous abridged version of the Hebbian rule. It states that neurons in the brain adapt during the learning process, a mechanism which is called neuronal plasticity. Hebb's theory dates back to the 1940s and subsequent research in neuroscience has further corroborated it. Today, we also know that different factors play a critical role, such as timing of firing, order of activity, and functional connectivity, as cutting-edge technologies allow examining subcellular processes with extraordinary precision.

Recently, scientists at the Institute of Science and Technology Austria (IST Austria) discovered a new learning rule for a specific type of excitatory synaptic connection in the hippocampus. Their study was now published in the renowned journal Nature Communications on May 13. These synapses are located in the so-called CA3 region of the hippocampus, which plays a critical role for storage and recall of spatial information in the brain. One of its hallmark properties is that memory recall can even be triggered by incomplete cues. This enables the network to complete neuronal activity patterns, a phenomenon termed pattern completion.

Professor Peter Jonas and his team, including postdoc José Guzmán and PhD student Rajiv Mishra, investigated how the strength of connections between neurons is adjusted, taking into account the relative timing of firing neurons. In neuroscience, this is known as spike-timing-dependent plasticity or STDP. According to the STDP rule, neuron A has to fire just before neuron B so that the synaptic connection becomes stronger with time. In the case of a reverse order—neuron B fires before neuron A—the connection between the neurons may become weaker.

Yet in apparent contrast to this rule, the team of Professor Jonas discovered in their experiments that a reverse order also leads to stronger connections between the investigated synapses (CA3-CA3 recurrent excitatory synapses). Surprisingly, a potentiation takes place independent of the order of firing. So if the sequence is not important at these particular synapses, why is this the case?

To address this question, the authors performed various cutting-edge measurements with extremely high precision. These included patch-clamp recordings to control which neurons fire at what time, imaging of calcium molecules, which play a critical role in synaptic plasticity, and subcellular recordings of electrical signals in dendrites. All data resulted in the same symmetric summation curves. Thus, the unusual induction curve of potentiation is generated by the properties of calcium signaling, which is in turn explained by the characteristics of electrical signaling in dendrites.

The scientists subsequently investigated what happens if a huge number of neurons is being connected via excitatory synapses in a network model. To this end, they ran computer simulations after incorporating different plasticity induction rules. They compared the results of simulations with the new symmetric plasticity induction rule with those of a conventional rule. The outcome clearly demonstrated that patterns could be better restored from partial cues when the new symmetric rule was applied. Professor Jonas: "The new plasticity induction rule may explain why learning in vivo occurs robustly under a variety of behavioral conditions. For example, it may explain storage and recall of cell assembly patterns of freely moving animals in open fields, as previously found by the systems neuroscience groups of IST Austria (O'Neill et al., 2008)".

The new data seem to be in contrast to classical STDP induction rules at other glutamatergic synapses. Do they violate the Hebb rule? Professor Jonas: "If you read the classical Hebb text carefully, it states: 'If the axon of a cell A is near enough to excite cell B [...], A's efficiency, as one of the cells firing B, is increased'. However, there is no mentioning of depression. So the new data do not violate Hebb's postulate, but may confirm it in the literal sense".

Explore further: Scientists find brain plasticity assorted into functional networks

More information: Rajiv K. Mishra et al, Symmetric spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage and recall in autoassociative networks, Nature Communications (2016). DOI: 10.1038/NCOMMS11552

Related Stories

Scientists find brain plasticity assorted into functional networks

February 4, 2016
The brain still has a lot to learn about itself. Scientists at the Virginia Tech Carilion Research Institute have made a key finding of the striking differences in how the brain's cells can change through experience.

Modeling memory in the brain

May 18, 2015
Scientists at EPFL have uncovered mathematical equations behind the way the brain forms – and even loses – memories.

Change in the brain: Astrocytes finally getting the recognition they deserve

April 25, 2016
Researchers at the RIKEN Brain Science Institute (BSI) in Japan have demonstrated that astrocytes help control the strength of connections between neurons. Published in Proceedings of the National Academy of Sciences, the ...

A specific neurotransmitter receptor supports optimal information processing in the brain

March 30, 2015
Researchers have been fascinated for a long time by learning and memory formation, and many questions are still open. Bochum-based neuroscientists Prof Dr Denise Manahan-Vaughan and Dr Hardy Hagena have discovered a key building ...

A day in the life of a synapse reveals new facets of the adult brain

February 5, 2016
A new study from the Picower Institute for Learning and Memory in the Feb. 4 online edition of Neuron sheds light on the innate plasticity of the adult brain at its most fundamental level—the synapse.

How the brain stabilizes its connections in order to learn better

July 17, 2014
Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, ...

Recommended for you

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.