How the brain stabilizes its connections in order to learn better

July 17, 2014
brain
White matter fiber architecture of the brain. Credit: Human Connectome Project.

Throughout our lives, our brains adapt to what we learn and memorise. The brain is indeed made up of complex networks of neurons and synapses that are constantly re-configured. However, in order for learning to leave a trace, connections must be stabilized. A team at the University of Geneva (UNIGE) discovered a new cellular mechanism involved in the long-term stabilization of neuron connections, in which non-neuronal cells, called astrocytes, play a role unidentified until now. These results, published in Current Biology, will lead to a better understanding of neurodegenerative and neurodevelopmental diseases.

The central nervous system excitatory – points of contact between neurons that allow them to transmit signals – are highly dynamic structures, which are continuously forming and dissolving. They are surrounded by non-neuronal cells, or , which include the distinctively star-shaped astrocytes. These cells form complex structures around synapses, and play a role in the transmission of cerebral information which was widely unknown before.

Plasticity and Stability

By increasing through whiskers stimulation of adult mice, the scientists were able to observe, in both the somatosensory cortex and the hippocampus, that this increased neuronal activity provokes an increase in astrocytes movements around synapses. The synapses, surrounded by astrocytes, re-organise their architecture, which protects them and increases their longevity. The team of researchers led by Dominique Muller, Professor in the Department of Fundamental Neuroscience of the Faculty of Medicine at UNIGE, developed new techniques that allowed them to specifically "control" the different synaptic structures, and to show that the phenomenon took place exclusively in the connections between neurons involved in learning. "In summary, the more the astrocytes surround the synapses, the longer the synapses last, thus allowing learning to leave a mark on memory," explained Yann Bernardinelli, the lead author on this study.

This study identifies a new, two-way interaction between and astrocytes, in which the learning process regulates the structural plasticity of astrocytes, who in turn determine the fate of the synapses. This mechanism indicates that astrocytes apparently play an important role in the processes of learning and memory, which present abnormally in various neurodegenerative and neurodevelopmental diseases, among which Alzheimer's, autism, or Fragile X syndrome.

This discovery highlights the until now underestimated importance of cells which, despite being non-neuronal, participate in a crucial way in the cerebral mechanisms that allow us to learn and retain memories of what we have learned.

Explore further: Blame it on the astrocytes

Related Stories

Blame it on the astrocytes

July 11, 2014
In the brains of all vertebrates, information is transmitted through synapses, a mechanism that allows an electric or chemical signal to be passed from one brain cell to another. Chemical synapses, which are the most abundant ...

Fight-or-flight chemical prepares cells to shift brain from subdued to alert

June 18, 2014
A new study from The Johns Hopkins University shows that the brain cells surrounding a mouse's neurons do much more than fill space. According to the researchers, the cells, called astrocytes because of their star-shaped ...

Astrocytes control the generation of new neurons from neural stem cells

August 24, 2012
Astrocytes are cells that have many functions in the central nervous system, such as the control of neuronal synapses, blood flow, or the brain's response to neurotrauma or stroke.

Cellular environment controls formation and activity of neuronal connections

May 6, 2013
Environment moulds behaviour - and not just that of people in society, but also at the microscopic level. This is because, for their function, neurons are dependent on the cell environment, the so-termed extracellular matrix. ...

Synaptic levels of clathrin protein are important for neuronal plasticity

June 19, 2014
Researchers of the group of cellular and molecular neurobiology of the Bellvitge Biomedical Research Institute (IDIBELL) and the University of Barcelona, led by researcher Artur Llobet, have shown that synaptic levels of ...

Recommended for you

Researchers find monkey brain structure that decides if viewed objects are new or unidentified

August 18, 2017
A team of researchers working at the University of Tokyo School of Medicine has found what they believe is the part of the monkey brain that decides if something that is being viewed is recognizable. In their paper published ...

Artificial neural networks decode brain activity during performed and imagined movements

August 18, 2017
Artificial intelligence has far outpaced human intelligence in certain tasks. Several groups from the Freiburg excellence cluster BrainLinks-BrainTools led by neuroscientist private lecturer Dr. Tonio Ball are showing how ...

Study of nervous system cells can help to understand degenerative diseases

August 18, 2017
The results of a new study show that many of the genes expressed by microglia differ between humans and mice, which are frequently used as animal models in research on Alzheimer's disease and other neurodegenerative disorders.

How whip-like cell appendages promote bodily fluid flow

August 18, 2017
Researchers at Nagoya University have identified a molecule that enables cell appendages called cilia to beat in a coordinated way to drive the flow of fluid around the brain; this prevents the accumulation of this fluid, ...

Researchers make surprising discovery about how neurons talk to each other

August 17, 2017
Researchers at the University of Pittsburgh have uncovered the mechanism by which neurons keep up with the demands of repeatedly sending signals to other neurons. The new findings, made in fruit flies and mice, challenge ...

Neurons involved in learning, memory preservation less stable, more flexible than once thought

August 17, 2017
The human brain has a region of cells responsible for linking sensory cues to actions and behaviors and cataloging the link as a memory. Cells that form these links have been deemed highly stable and fixed.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.