Research suggests that diabetes could be due to failure of beta cell 'hubs'

July 21, 2016
Credit: CC0 Public Domain

The significant role of beta cell 'hubs' in the pancreas has been demonstrated for the first time, suggesting that diabetes may due to the failure of a privileged few cells, rather than the behaviour of all cells.

Researchers used optogenetic and photopharmacological targeting to precisely map the role of the cells required for the secretion of insulin.

The team believe that the findings, published in Cell Metabolism, could pave the way for therapies that target the 'hubs'.

Dr David Hodson, from the University of Birmingham, explained, "It has long been suspected that 'not all cells are equal' when it comes to insulin secretion. These findings provide a revised blueprint for how our pancreatic islets function, whereby these hubs dictate the behaviour of other cells in response to glucose."

According to the NHS, there are currently 3.9 million people living with in the UK, with 90% of those affected having type 2 diabetes.

Type 2 diabetes occurs when the pancreas fails to produce enough insulin to function properly, meaning that glucose stays in the blood rather than being converted into energy.

Beta cells (β cells) make up around 65-80% of the cells in the islets of the . Their primary function is to store and release insulin and, when functioning correctly, can respond quickly to fluctuations in blood glucose concentrations by secreting some of their stored insulin.

These findings show that just 1-10% of beta cells control islet responses to glucose.

Dr Hodson, who is supported by Diabetes UK RD Lawrence and EFSD/Novo Nordisk Rising Star Fellowships, continued, "These specialised beta cells appear to serve as pacemakers for insulin secretion. We found that when their activity was silenced, islets were no longer able to properly respond to glucose. "

Prof Guy Rutter, who co-led the study at Imperial College London, added "This study is interesting as it suggests that failure of a handful of may lead to diabetes".

Studies were conducted on islet samples from both murine and human models.

The team note that, though the findings present a significant step forward in understanding the cell mechanisms, the experiments therefore may not be reflected in vivo, where blood flow direction and other molecule dynamics may influence the role of the hubs and .

Explore further: Study characterizes insulin secretion in response to metabolic stress

More information: Cell Metabolism, DOI: 10.1016/j.cmet.2016.06.020

Related Stories

Study characterizes insulin secretion in response to metabolic stress

April 7, 2016
The development of type 2 diabetes is linked to persistent inflammation as a consequence of metabolic stress. Prolonged exposure to the proinflammatory molecule IL-1β is associated with reduced insulin secretion by pancreatic ...

Same gene links blood sugar problems in Down syndrome and Type 2 diabetes

May 19, 2016
Problems with insulin secretion experienced by people with Type 2 diabetes, parallel similar problems with insulin-secreting beta cells in many individuals with Down syndrome. A new study, published on May 19 in PLOS Genetics ...

Microtubules act as cellular 'rheostat' to control insulin secretion

December 4, 2015
Microtubules—cellular "highways" that deliver cargo to the cell membrane for secretion—have a surprising role in pancreatic beta cells. Instead of facilitating glucose-stimulated insulin secretion, they limit it, a team ...

Study explains how low testosterone raises diabetes risk

April 28, 2016
Doctors have long known that men with low testosterone are at greater risk for developing type 2 diabetes. For the first time, researchers have identified how testosterone helps men regulate blood sugar by triggering key ...

Researchers find noninvasive way to view insulin in pancreas

February 24, 2016
A new study in the journal Diabetes by Arvan and his fellow U-M researchers finally allowed them to see exactly how much insulin was present in the pancreas of a living animal.

Discovery of insulin-producing beta cell subtypes may impact diabetes treatment

July 11, 2016
A new study led by nationally prominent stem cell scientist Markus Grompe, M.D., has determined the existence of at least four separate subtypes of human insulin producing beta cells that may be important in the understanding ...

Recommended for you

Diabetes pill might replace injection to control blood sugar

October 17, 2017
(HealthDay)— An injectable class of diabetes medication—called glucagon-like peptide-1 or GLP-1—might one day be available in pill form, research suggests.

Skimping on sleep may contribute to gestational diabetes

October 17, 2017
The amount of time spent sleeping in the United States has dropped significantly in the past twenty years with almost a quarter of women and 16 percent of men experiencing insufficient sleep. Now, a new study has found that ...

Artificial pancreas performs well in clinical trial

October 16, 2017
During more than 60,000 hours of combined use of a novel artificial pancreas system, participants in a 12-week, multi-site clinical trial showed significant improvements in two key measures of well-being in people living ...

Omega-6 fats may help prevent type 2 diabetes

October 11, 2017
The risk of developing type 2 diabetes could be significantly reduced by eating a diet rich in omega-6 polyunsaturated fats, a new study suggests.

Where there's type 1 diabetes, celiac disease may follow

October 10, 2017
(HealthDay)—Parents of young children with type 1 diabetes need to be on the lookout for symptoms of another autoimmune condition—celiac disease, new research suggests.

Type 1 diabetes and the microbiota—MAIT cells as biomarkers and new therapeutic targets

October 10, 2017
Together with colleagues from AP-HP Necker–Enfants Malades Hospital in Paris, scientists from the Cochin Institute (CNRS / INSERM / Paris Descartes University) have discovered that the onset of type 1 diabetes is preceded ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.