Researchers find new way to control genes often involved in cancer growth

July 8, 2016, H. Lee Moffitt Cancer Center & Research Institute
cancer
Killer T cells surround a cancer cell. Credit: NIH

Cancer is a group of more than 100 different diseases. All are driven by cells and genes that escape the normal process of division and begin their own plan to replicate in the body. Advances in genetics and molecular biology are providing researchers with better knowledge of the genetic mutations and cell alterations that can lead to cancer, and also how to utilize that information to develop preventive measures and therapies to target the diseases.

Moffitt Cancer Center, a leader in molecular cancer research, and a research team led by Jia Fang, Ph.D., assistant member of the Tumor Biology Department, has discovered a new way to control the activity of SETDB1, a that is often upregulated in cancer. Their findings have been published in the June 16 issue of Molecular Cell.

The novel mechanism to control the protein function is called monoubiquitination. Proteins can be regulated by a process called ubiquitination, in which an ubiquitin molecule is added to a protein. Ubiquitin modification can result in a number of different effects. The addition of many ubiquitin molecules can target a protein for degradation, while the addition of a single ubiquitin molecule (monoubiquitination) can lead to activation of protein signaling pathways or target other proteins for ubiquitination. Ubiquitin is usually added to a protein through an ordered series of events - activation by an E1 , conjugation by an E2 enzyme and ligation by an E3 enzyme.

SETDB1 regulates the level of DNA compaction and gene expression. When SETDB1 is active, the expression levels of target genes are repressed. Given its critical role in controlling gene expression, SETDB1 must be precisely regulated to ensure that molecular processes run properly.

Moffitt researchers performed molecular studies to show for the first time that SETDB1 is constitutively modified by a single ubiquitin molecule. The ubiquitination event is mediated directly by E1 and E2 enzymes, without the traditional involvement of an E3 enzyme. Importantly, this monoubiquitination serves as an integral part of SETDB1 to render its activity and leads to inhibition of target .

"This is the first demonstration that a constitutive monoubiquitination by an E2 enzyme complements the function of a key enzyme. These results suggest that this class of E2 enzymes is an attractive target for therapeutics," said Fang.

Explore further: Research explains the role of the gene BRCA1 in DNA repair

More information: Lidong Sun et al, E3-Independent Constitutive Monoubiquitination Complements Histone Methyltransferase Activity of SETDB1, Molecular Cell (2016). DOI: 10.1016/j.molcel.2016.04.022

Related Stories

Research explains the role of the gene BRCA1 in DNA repair

May 30, 2016
Scientists at the University of Birmingham are a step closer to understanding the role of the gene BRCA1. Changes in this gene are associated with a high risk of developing breast and ovarian cancer.

A single enzyme with the power of three could offer shortcut to therapeutic target

April 19, 2016
Researchers identified a single enzyme doing the work of a trio thought necessary to control a common cellular signaling process being pursued as a therapeutic target.

New mechanism for cancer progression discovered

November 27, 2012
The protein Ras plays an important role in cellular growth control. Researchers have focused on the protein because mutations in its gene are found in more than 30 percent of all cancers, making it the most prevalent human ...

Recommended for you

Researchers identify a mechanism that fuels cancer cells' growth

November 14, 2018
Scientists at the UCLA Jonsson Comprehensive Cancer Center have identified sodium glucose transporter 2, or SGLT2, as a mechanism that lung cancer cells can utilize to obtain glucose, which is key to their survival and promotes ...

A new approach to detecting cancer earlier from blood tests: study

November 14, 2018
Cancer scientists led by principal investigator Dr. Daniel De Carvalho at Princess Margaret Cancer Centre have combined "liquid biopsy", epigenetic alterations and machine learning to develop a blood test to detect and classify ...

New antibody breakthrough to lead the fight against cancer

November 14, 2018
Scientists at the University of Southampton have developed a new antibody that could hold the key to unlocking cancer's defence against the body's immune system.

Photoacoustic imaging may help doctors detect ovarian tumors earlier

November 14, 2018
Ovarian cancer claims the lives of more than 14,000 in the U.S. each year, ranking fifth among cancer deaths in women. A multidisciplinary team at Washington University in St. Louis has found an innovative way to use sound ...

Solving the mystery of NPM1 in acute myeloid leukemia

November 13, 2018
Although it has long been recognized that mutations of gene NPM1 play an important role in acute myeloid leukemia, no one has determined how the normal and the mutated forms of the protein NPM1 function.

Cognitive decline—radiation—brain tumor prevented by temporarily shutting down immune response

November 13, 2018
Treating brain tumors comes at a steep cost, especially for children. More than half of patients who endure radiation therapy for these tumors experience irreversible cognitive decline, a side-effect that has particularly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.