Potential new target identified for treating itch

July 19, 2016 by Jim Dryden, Washington University School of Medicine
Zhou-Feng Chen, Ph.D. (left), director of the Center for the Study of Itch at Washington University School of Medicine in St. Louis, and postdoctoral research scholar Devin M. Barry, Ph.D., have found that certain pathways in the sensory neurons of mice can work together to transmit itch signals. The discovery may help scientists find more effective ways to make itching stop. Credit: Robert Boston

Researchers have found how sensory nerve cells work together to transmit itch signals from the skin to the spinal cord, where neurons then carry those signals to the brain. Their discovery may help scientists find more effective ways to make itching stop.

The researchers, at Washington University School of Medicine in St. Louis, report the new findings online July 19 in the journal Science Signaling.

"By interfering with the activity of , we may be able to inhibit multiple types of itching," said principal investigator Zhou-Feng Chen, PhD, director of the university's Center for the Study of Itch. "It appears there is cross-talk between pathways called calcium channels in cells that process the itch signal."

The researchers studied in neurons, which allow for the transport of calcium ions from one nerve cell to another, helping the cells transmit itch signals from the skin to other cells in the spinal cord.

Chen's team focused on the dorsal root ganglion of laboratory mice, a structure near the spinal cord that is full of . It processes signals from the skin and transmits them to neurons in the spinal cord.

The researchers looked at on how neurons in the dorsal root ganglion process and transmit two types of itch signals. One signal, called histamine-induced itching, is caused by bug bites, for example, and responds to antihistamine drugs, such as Benadryl.

The other type of itching, called called chloroquine-induced itching, often is experienced by malaria patients who take the drug chloroquine to control their symptoms.

Scientists had thought that histamine signals traveled through one type of calcium channel, while chloroquine signals traveled through a different channel.

But when scientists genetically engineered mice without the channel that processes histamine signals and then exposed the animals to histamine, the mice still scratched. The mice also scratched if they lacked the calcium channel that transmits chloroquine-induced itch signals and were exposed to chloroquine.

Chen's team—puzzled by such results—spent years looking for an explanation. After dozens of experiments, the scientists found that a third calcium channel called TRPV4 can transmit both types of itch. And they also learned that TRPV1, the channel that transmits histamine-induced itch, also plays a role in chloroquine-induced itch by helping TRPV4 process itch signals. The fact that it is involved in both of those types of itch raises the possibility that the TRPV4 channel also plays a role in other types of itching, including .

"The big surprise is that although these different types of itching have different causes, these two channels in sensory cells can work together to signal both types of itching," said Chen, a professor of anesthesiology, of psychiatry and of developmental biology. "We found that the TRPV1 channel that processes histamine-induced itch seems to work as a kind of molecular chaperone in the sensory neurons, helping the other channels process itch signals and transmit them to the spinal cord."

Chen said proving that the channels work in concert helps explain how sensory cells can process numerous types of environmental signals, including itching that results from different things. It also suggests the channels his team identified may be targets for treating itch.

"It gives us new therapeutic targets upstream of the neurons in the ," he explained. "By targeting a single channel in the periphery, it may be possible to reduce histamine-induced itching, chloroquine-induced itching and even types of chronic that don't respond to current therapies."

Explore further: Neuroscience: Why scratching makes you itch more

More information: S. Kim et al, Facilitation of TRPV4 by TRPV1 is required for itch transmission in some sensory neuron populations, Science Signaling (2016). DOI: 10.1126/scisignal.aaf1047

Related Stories

Neuroscience: Why scratching makes you itch more

October 30, 2014
Turns out your mom was right: Scratching an itch only makes it worse. New research from scientists at Washington University School of Medicine in St. Louis indicates that scratching causes the brain to release serotonin, ...

Scientists unravel mechanisms in chronic itching

October 15, 2013
Anyone who has suffered through sleepless nights due to uncontrollable itching knows that not all itching is the same. New research at Washington University School of Medicine in St. Louis explains why.

These scientists are 'itching' to help you stop scratching

June 5, 2013
Itch and scratch, itch and scratch. It's not the most serious physical problem in our lives, but it is common and it is very annoying. Now, researchers at the Hebrew University of Jerusalem and in Boston have come up with ...

Pain and itch connected down deep

May 2, 2011
A new study of itch adds to growing evidence that the chemical signals that make us want to scratch are the same signals that make us wince in pain.

Recommended for you

How the brain tells our limbs apart

February 21, 2018
Legs and arms perform very different functions. Our legs are responsible primarily for repetitive locomotion, like walking and running. Our arms and hands, by contrast, must be able to execute many highly specialized jobs—picking ...

Schizophrenia a side effect of human development

February 21, 2018
Schizophrenia may have evolved as an "unwanted side effect" of the development of the complex human brain, a new study has found.

Cognitive benefits of 'young blood' linked to brain protein in mice

February 21, 2018
Loss of an enzyme that modifies gene activity to promote brain regeneration may be partly responsible for age-related cognitive decline, according to new research in laboratory mice by UC San Francisco scientists, who also ...

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.