Sub-set of stem cells found to minimize risks when used to treat damaged hearts

July 25, 2016
Scientists use mathematical modeling to simulate human mesenchymal stem cell delivery to a damaged heart and found that using one sub-set of these stem cells minimises the risks associated with this therapy. The study, published in PLOS Computational Biology, represents a development in novel strategies to repair and regenerate heart muscle and could improve stem cell treatments for heart attack patients. Credit: Jerry Reyes / Flickr

Scientists use mathematical modeling to simulate human mesenchymal stem cell delivery to a damaged heart and found that using one sub-set of these stem cells minimises the risks associated with this therapy. The study, published in PLOS Computational Biology, represents a development in novel strategies to repair and regenerate heart muscle and could improve stem cell treatments for heart attack patients.

Myocardial infarction—better known as a heart attack—strikes on average every 43 seconds in America. This has motivated novel cardiotherapeutic strategies to repair and regenerate , including human mesenchymal stem cell (hMSC) therapy. However, in clinical trials the benefits have often been modest and transient, which reflects our limited mechanistic knowledge of how hMSCs impact cardiac function.

Researchers, led by Joshua Mayourian at the Icahn School of Medicine at Mount Sinai, used mathematical modeling to simulate electrical interactions between these stem cells and heart cells to develop insight into possible adverse effects, as well as to hypothesize new methods for reducing some potential risks of this therapy.

Their computer simulations demonstrate that one family of human minimizes disturbances in cardiac single-cell and tissue level electrical activity. By identifying the benefits of using this specific sub-set of human mesenchymal stem cells this research may enhance safety for receiving . This advance could therefore lead to new clinical trials and future improvements in treatment of patients with heart failure.

This study provides a new mathematical model that could be incorporated into future computational studies on mesenchymal stem cells. It also provides novel insight into human mesenchymal stem cell-heart cell interactions that can guide future experimental studies to understand the mechanisms underlying mesenchymal stem cell therapy for the heart.

Explore further: Muscles on-a-chip provide insight into cardiac stem cell therapies

More information: Mayourian J, Savizky RM, Sobie EA, Costa KD (2016) Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes. PLoS Comput Biol 12(7): e1005014. DOI: 10.1371/journal.pcbi.1005014

Related Stories

Muscles on-a-chip provide insight into cardiac stem cell therapies

February 8, 2016
Stem cell-derived heart muscle cells may fail to effectively replace damaged cardiac tissue because they don't contract strongly enough, according to a study in The Journal of Cell Biology. The study, "Coupling Primary and ...

A tool for isolating progenitor cells from human heart tissue could lead to heart repair

October 7, 2015
A*STAR researchers and colleagues have developed a method to isolate and expand human heart stem cells, also known as cardiac progenitor cells, which could have great potential for repairing injured heart tissue.

Novel stem cell approach promising for heart failure

August 3, 2015
(HealthDay)—A new method for delivering stem cells to damaged heart muscle has shown early promise in treating severe heart failure, researchers report online July 27 in Stem Cells Translational Medicine.

New research reveals combined cell therapy enhances cardiac performance following heart attack

November 11, 2015
A new study from the Interdisciplinary Stem Cell Institute (ISCI) at the University of Miami Miller School of Medicine finds that combination stem cell therapy, using c-kit+ cardiac stem cells (CSCs) and mesenchymal stem ...

Heart failure patients have improved outcomes following investigational stem cell treatment

April 4, 2016
An investigational stem cell therapy derived from patients' own blood marrow significantly improved outcomes in patients with severe heart failure, according to a study from the Cedars-Sinai Heart Institute.

Therapy using stem cells, bone marrow cells, appears safe for patients with ischemic cardiomyopathy

November 18, 2013
Alan W. Heldman, M.D., of the University of Miami Miller School of Medicine, and colleagues conducted a study to examine the safety of transendocardial stem cell injection (TESI) with autologous mesenchymal stem cells and ...

Recommended for you

Could aggressive blood pressure treatments lead to kidney damage?

July 18, 2017
Aggressive combination treatments for high blood pressure that are intended to protect the kidneys may actually be damaging the organs, new research from the University of Virginia School of Medicine suggests.

Quantifying effectiveness of treatment for irregular heartbeat

July 17, 2017
In a small proof-of-concept study, researchers at Johns Hopkins report a complex mathematical method to measure electrical communications within the heart can successfully predict the effectiveness of catheter ablation, the ...

Concerns over side effects of statins stopping stroke survivors taking medication

July 17, 2017
Negative media coverage of the side effects associated with taking statins, and patients' own experiences of taking the drugs, are among the reasons cited by stroke survivors and their carers for stopping taking potentially ...

Study discovers anticoagulant drugs are being prescribed against safety advice

July 17, 2017
A study by researchers at the University of Birmingham has shown that GPs are prescribing anticoagulants to patients with an irregular heartbeat against official safety advice.

Protein may protect against heart attack

July 14, 2017
DDK3 could be used as a new therapy to stop the build-up of fatty material inside the arteries

Heart study finds faulty link between biomarkers and clinical outcomes

July 14, 2017
Surrogate endpoints (biomarkers), which are routinely used in clinical research to test new drugs, should not be trusted as the ultimate measure to approve new health interventions in cardiovascular medicine, according to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.