Visual pigment rhodopsin forms two-molecule complexes in vivo

July 25, 2016

The study of rhodopsin—the molecule that allows the eye to detect dim light—has a long and well-recognized history of more than 100 years. Nevertheless, there is still controversy about the structure in which the molecule exists in the cells of the eye. In a paper published today in the Proceedings of the National Academy of Sciences, researchers at Baylor College of Medicine, the University of Utah and the Johns Hopkins University School of Medicine have determined for the first time the most likely configuration of rhodopsin in a living organism, and hope this discovery will help develop future therapies for retinitis pigmentosa, a degenerative eye disease for which there is no known cure.

"Until recently, the established concept, based on a vast amount of literature from biochemistry, biophysics and physiology, sustained that exists and functions as a monomer—a single molecule. About 10 years ago, however, evidence began to emerge that rhodopsin may exist as a dimer, a two-molecule complex. Nonetheless, all of the supporting evidence available is from in vitro experiments, that is, experiments performed outside of a living organism," said senior author Dr. Yingbin Fu, associate professor and Sarah Campbell Blaffer endowed chair of ophthalmology at Baylor. "In this study we have shown, for the first time in vivo—inside a living organism—that rhodopsin exists as a dimer."

The structure and function of rhodopsin have long served as a model for G-protein-coupled receptors (GPCRs), which constitute the largest family of protein molecules that allow the cell to sense the outside environment, including light, odors and hormones.

Many GPCRs have multiple subunits that are different from each other. Rhodopsin, on the other hand, has one subunit, thus making it difficult to distinguish rhodopsin monomers from rhodopsin dimers, in vivo. To determine whether rhodopsin forms monomers or dimers in vivo, the researchers tested rhodopsin's ability to form dimers with a different molecule, a cone opsin.

"We obtained the first clear in vivo evidence by taking advantage of a unique genetically modified mouse line that expresses a cone opsin, a molecule responsible for color vision, in rods—the cells responsible for dim light detection that naturally express rhodopsin," said Fu. "We found that in the absence of a vitamin-A based chromophore, a condition required for this experiment, the cone opsin can mature and target to the right place if and only if rhodopsin is present to help it along, that is, when cone opsin and rhodopsin form a two-molecule complex."

Most importantly, the researchers also determined which sections or domains of the rhodopsin molecule were essential for forming dimers. "We have also confirmed a domain that is key for rhodopsin dimerization and shown, again in vivo, that rhodopsin maturation and targeting to its right place on the cell becomes defective when dimerization is disrupted by blocking the domains involved in forming dimers."

The authors hope that their findings will also help develop future treatments for , which has been associated with more than 100 mutations of rhodopsin. "It is conceivable that some of the mutations that cause retinitis pigmentosa may affect the process of rhodopsin dimerization. When developing future therapies for this condition, it is important to keep in mind that rhodopsin works as a dimer," said Fu.

"Considering that rhodopsin is the prototypical GPCR, that the evidence for a functional rhodopsin monomer is so strong, and that strong general resistance remains in the field against the rhodopsin-dimer concept, our in vivo experiments reported here are therefore crucial for steering the field in the correct direction," said co-author Dr. King-Wai Yau, professor of neuroscience at Johns Hopkins University.

"As a clinician involved in multiple clinical trials of treatment for retinitis pigmentosa, I can say this is a very important finding," said Dr. Timothy Stout, chair and professor of ophthalmology and director of the Cullen Eye Institute at Baylor. "We recruited Dr. Fu in September 2015 as a member of the new Center for Retinal Research at Baylor. This work is another demonstration of Dr. Fu's innovative approaches and multidisciplinary expertise for studying retina diseases. I am confident that Dr. Fu's team will continue to make great discoveries in retinal research."

Explore further: Shedding light on the evolution of whale vision

More information: Dimerization of visual pigments in vivo, Proceedings of the National Academy of Sciences, www.pnas.org/cgi/doi/10.1073/pnas.1609018113

Related Stories

Shedding light on the evolution of whale vision

February 20, 2016
Eyes are the window between an animal and its environment, and if your environment has changed as much as a whale's has over the last 50 million years, they tell an intriguing story about your evolutionary history. As marine ...

Why animals don't have infrared vision

June 9, 2011
On rare occasion, the light-sensing photoreceptor cells in the eye misfire and signal to the brain as if they have captured photons, when in reality they haven't. For years this phenomenon remained a mystery. Reporting in ...

Crag keeps the light 'fantastic' for photoreceptors

December 4, 2012
The ability of the eye of a fruit fly (Drosophila melanogaster) to respond to light depends on a delicate ballet that keeps the supply of light sensors called rhodopsin constant as photoreceptors turn on and off in response ...

Recommended for you

Scientists reveal new avenue for drug treatment in neuropathic pain

November 24, 2017
New research from King's College London has revealed a previously undiscovered mechanism of cellular communication, between neurons and immune cells, in neuropathic pain.

Small but distinct differences among species mark evolution of human brain

November 23, 2017
The most dramatic divergence between humans and other primates can be found in the brain, the primary organ that gives our species its identity.

Team constructs whole-brain map of electrical connections key to forming memories

November 22, 2017
A team of neuroscientists at the University of Pennsylvania has constructed the first whole-brain map of electrical connectivity in the brain based on data from nearly 300 neurosurgical patients with electrodes implanted ...

To forget or to remember? Memory depends on subtle brain signals, scientists find

November 22, 2017
The fragrance of hot pumpkin pie can bring back pleasant memories of holidays past, while the scent of an antiseptic hospital room may cause a shudder. The power of odors to activate memories both pleasing and aversive exists ...

Pitch imperfect? How the brain decodes pitch may improve cochlear implants

November 22, 2017
Picture yourself with a friend in a crowded restaurant. The din of other diners, the clattering of dishes, the muffled notes of background music, the voice of your friend, not to mention your own – all compete for your ...

New research suggests high-intensity exercise boosts memory

November 22, 2017
The health advantages of high-intensity exercise are widely known but new research from McMaster University points to another major benefit: better memory.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.