Discovery could help treatments for sickle cell disease

August 8, 2016
Researchers have established new biomarkers that could help improve the understanding of sickle cell disease treatments. Researchers separated cells in blood samples from patients with sickle cell disease to isolate cells of different densities. Hydroxyurea, an FDA-approved drug, improved the biophysical markers across all densities. (Top L): The least dense cells were disc-shaped and most like normal red blood cells. (Top R): Red blood cells in people with the disease have an abnormal type of hemoglobin that causes the cells to become sickle shaped when they lose oxygen. (Bottom L): When the sickled blood cells return to areas of the body with more oxygen, most of them regain their original shape, while accumulating damages after each sickling cycle. (Bottom R): As the cells circulate through the body repeatedly, they gradually become more dense and some of them become irreversibly sickled. Credit: Carnegie Mellon University

An interdisciplinary, international group of researchers has found new biophysical markers that could help improve the understanding of treatments for sickle cell disease, a step toward developing better methods for treating the inherited blood disorder that affects an estimated 80,000 to 100,000 Americans each year.

"There is a critical need for patient-specific biomarkers that can be used to assess the effectiveness of treatments for sickle cell disease," said Subra Suresh, president of Carnegie Mellon University and co-author of the study. "This study shows how techniques commonly used in engineering and physics can help us to better understand how the red blood cells in people with sickle cell disease react to treatment, which could lead to improved diagnostics and therapies."

The findings from engineers, physicists and clinicians from Carnegie Mellon, the University of Pittsburgh, the Massachusetts Institute of Technology, Florida Atlantic University, Korea University, the Korea Advanced Institute of Science and Technology, and Harvard University will be published this week in the online early edition of the Proceedings of the National Academy of Sciences (PNAS).

People with sickle cell disease have an abnormal form of hemoglobin, a protein found in red blood cells that carry oxygen throughout the body. Normal red blood cells are flexible discs that easily bend and stretch to flow through the body's narrow blood vessels. In sickle cell disease, the abnormal hemoglobin forms fibers that cause the blood cells to take on a flattened, sickled shape and stiffen when they lose oxygen. This change in shape and rigidity causes the red blood cells to be stuck in the blood vessels and prevents the transport of oxygen to the surrounding tissue. This can cause anemia and extreme pain and impact the health of the body's tissue and organs.

Currently, hydroxyurea is the only FDA-approved drug for sickle cell disease. The drug reduces sickling in red blood cells and is used to treat pain and reduce the need for blood transfusions in some patients, but it does not work in all patients. Researchers have been divided over what mechanisms cause the drug to work. Some believe it works by reactivating , which is better at transporting oxygen than the abnormal hemoglobin that causes sickling. Others believe it works by increasing the volume of red blood cells, reducing the concentration of sickle hemoglobin.

In the current study, the international research team evaluated the biophysical properties—shape, surface area and volume—and biomechanical properties—flexibility and stickiness—of red blood cells under normal oxygenated conditions using electromagnetic waves to measure small differences in physical properties. The technique, known as common-path interferometric microscopy, allowed researchers to get a three-dimensional view of the cells.

Using blood samples from patients with sickle cell disease, the researchers separated red blood cells into four groups based on their density. Normal, disc-shaped red blood cells were the least dense, while severely sickled cells were the most dense. They then took samples from people receiving hydroxyurea treatment and those not receiving treatment. The red blood cells of those receiving treatment showed an improvement in all of the biophysical and biomechanical properties tested across all density levels. Furthermore, improvement in the physical properties of red of people treated with hydroxyurea correlated more with an increase in the volume than with levels of fetal hemoglobin.

"Our findings shine a light on the mechanism behind hydroxyurea action, which has long been debated in the scientific community," said Ming Dao, principal research scientist in MIT's Department of Materials Science and Engineering and co-author of the study. "It's exciting to see that using the latest optical imaging tools, we can now confirm which one is the dominating mechanism. Understanding the key mechanism of action will allow us to explore novel and improved therapeutic approaches for sickle cell disease."

The researchers hope that these biophysical markers can be combined with biochemical and molecular-level markers to assess things like the severity of a patient's , determine whether or not a patient will respond to hydroxyurea treatment and monitor the effectiveness of that treatment.

Explore further: Multiple myeloma drug could revolutionize treatment for sickle cell disease

More information: Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1610435113

Related Stories

Multiple myeloma drug could revolutionize treatment for sickle cell disease

December 17, 2015
An established drug for recurrent multiple myeloma might effectively be repurposed to improve the survival and day-to-day lives of patients with devastating sickle cell disease, according to revealing new research by a Feinstein ...

Researchers reveal potential treatment for sickle cell disease

November 2, 2011
A University of Michigan Health System laboratory study reveals a key trigger for producing normal red blood cells that could lead to a new treatment for those with sickle cell disease.

UCLA stem cell gene therapy for sickle cell disease advances toward clinical trials

July 1, 2013
Researchers at UCLA's Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research have successfully established the foundation for using hematopoietic (blood-producing) stem cells from the bone marrow of patients ...

Recommended for you

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

Inflammation trains the skin to heal faster

October 18, 2017
Scars may fade, but the skin remembers. New research from The Rockefeller University reveals that wounds or other harmful, inflammation-provoking experiences impart long-lasting memories to stem cells residing in the skin, ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jhnycmltly
not rated yet Aug 14, 2016
One possibility not mentioned is iron chelation by hydroxyurea.

"Iron chelators hydroxyurea and bathophenanthroline disulfonate inhibit DNA synthesis by different pathways"

The hydroxyurea may bind up the iron not allowing it to react randomly in the body.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.