Oxygen can impair cancer immunotherapy in mice

August 25, 2016, Ohio State University Medical Center
An illustration that will appear alongside this research in the journal, Cell. Credit: David Clever, Ohio State University, and National Institutes of Health

Researchers have identified a mechanism in mice by which anticancer immune responses are inhibited within the lungs, a common site of metastasis for many cancers. This mechanism involves oxygen inhibition of the anticancer activity of T cells. Inhibiting the oxygen-sensing capability of immune cells, either genetically or pharmacologically, prevented lung metastasis. This research was conducted by Nicholas Restifo, M.D., Center for Cancer Research, National Cancer Institute (NCI) and others at NCI as well as colleagues at the National Institute of Allergy and Infectious Diseases, both parts of the National Institutes of Health. The findings appeared August 25, 2016, in the journal Cell.

Metastasis is the cause of most cancer deaths. It has long been hypothesized that the process of cancer metastasis requires cooperation between spreading cancer cells and the cellular environment to which they spread. A key component of that environment is the local immune system, which can act to fight off invading cancer cells.

The researchers discovered that T cells, a type of immune cell, contain a group of oxygen-sensing proteins which act to limit inflammation within the lungs. This new research shows, however, that oxygen also suppresses the anticancer activity of T cells, thereby permitting cancer cells that have spread to the lungs to escape immune attack and establish metastatic colonies.

"Since the lung is one of the most frequent sites to which cancers spread, we hypothesized that there might be unique immunologic processes that aid tumor cells in their ability to establish themselves in the lung. Because oxygen is a pervasive local environmental factor in the lung, we wanted to examine what role oxygen might play in regulating immunity in the lung," said David Clever, a M.D., Ph.D. candidate who trained in Restifo's lab, and has now returned to the Ohio State University College of Medicine.

Dr. Nick Restifo, a senior investigator in NCI's Center for Cancer Research, discusses his recently published study in Cell finding that oxygen, a molecule necessary for life, paradoxically aids cancer metastasis to the lung by impairing cancer-killing immune cells. Credit: National Cancer Institute

The research team discovered that oxygen-sensing proteins, called prolyl hydroxylase domain (PHD) proteins, act within T cells to prevent overly strong immune responses to harmless particles that frequently enter the lung. This protective mechanism also allows circulating cancer cells to get a foothold in the lung. Specifically, the researchers found that PHD proteins promote the development of regulatory T cells, a type of T cell that suppresses the activity of other parts of the immune system. They also found that PHD proteins limit the development of inflammatory T cells and restrain their ability to produce molecules involved in cancer killing.

To test whether PHD proteins promote tumor cells to grow in the lung, the researchers used a "knockout" mouse strain that lacks PHD proteins in its T cells. These PHD-knock-out mice, as well as unaltered normal mice, were injected with melanoma cells. Strikingly, whereas normal mice showed large amounts of cancerous melanoma cells in the lungs, the mice whose T cells lacked PHD proteins showed almost no evidence of melanoma in the lungs.

Given their finding that PHD proteins suppress the inflammatory immune response in the lung, the researchers wondered whether inhibiting them might improve the efficacy of adoptive cell transfer, a type of immunotherapy that harnesses the ability of a patient's own T cells to recognize and attack cancer. In adoptive cell transfer, T cells are extracted from a patient's tumor tissue, expanded to great numbers in the laboratory, and then administered intravenously into the patient along with a T-cell growth factor, with hopes that these cells will return to sites of cancer and eliminate it.

For these experiments, the research team expanded the antitumor T cells in the presence of a drug called dimethyloxaloylglycine (DMOG), which blocks the activity of PHD proteins. In the lab, the drug treatment improved the cancer-killing properties of the T cells and when administered to mice with established metastatic cancer, the drug-treated T cells were far better at eliminating cancer than untreated T cells. DMOG treatment has also been found to improve the cancer-killing properties of human T cells in other studies. The application of these findings to human adoptive cell transfer immunotherapy clinical trials is being investigated by Restifo's group.

"Adoptive cell transfer immunotherapy provides a unique opportunity for manipulation of a patient's own T cells out of the body," said Restifo. "Although our finding is in mice, we are eager to test whether disruption of the oxygen sensing machinery in T cells—with drugs, genetics, or regulation of environmental oxygen—will enhance the efficacy of T-cell mediated immune therapies for cancer in humans."

Explore further: Study identifies a potential therapeutic target for lung cancer

More information: Oxygen-sensing by T cells establishes an immunologically tolerant metastatic niche. Cell. August 25, 2016. DOI: 10.1016/j.cell.2016.07.032

Related Stories

Study identifies a potential therapeutic target for lung cancer

June 13, 2016
Small-cell lung cancer (SCLC) is one of the deadliest types of cancer, and it has been several decades since new treatment options have been approved for this disease. Although recent advances in cancer treatments have focused ...

New Phase 1 clinical trial to test Durvalumab in pediatric patients

August 17, 2016
In an innovative, first-in-pediatrics study, available only at Children's Hospital Los Angeles (CHLA), researchers will be enrolling children between 1 and 18 years of age who have certain types of relapsed or treatment-resistant ...

Hybrid immune cells in early-stage lung cancer spur anti-tumor T cells to action

July 14, 2016
The microenvironment of tumors is a mix of cell types, mostly comprised of inflammatory cells. White blood cells, recruited from the blood and bone marrow, represent a significant portion of these inflammatory cells and influence ...

Researchers use genetics to probe immune system's role in fighting cancer

August 25, 2016
To better understand the immune system's role in the fight against cancer, University of North Carolina Lineberger Comprehensive Cancer Center researchers have searched thousands of tumors for genetic signatures that might ...

Uncovering a new pathway to halting metastasis

August 19, 2016
Metastasis, the process by which cancer cells leave the primary tumor and spread to other sites in the body, is responsible for more than 90 percent of cancer deaths. Thus, there is a significant need to improve the therapeutic ...

Tumor-associated neutrophils boost anti-tumor immune responses

November 11, 2014
Lung cancer is a leading cause of cancer-related deaths in both men and women, and survival depends on the stage of cancer at diagnosis. An inflammatory response is induced following tumor formation, and the immune cells ...

Recommended for you

Pushing closer to a new cancer-fighting strategy

December 11, 2018
A molecular pathway that's frequently mutated in many different forms of cancer becomes active when cells push parts of their membranes outward into bulging protrusions, Johns Hopkins researchers report in a new study. The ...

Scientists have identified and modelled a distinct biology for paediatric AML

December 11, 2018
Scientists have identified and modelled a distinct biology for paediatric acute myeloid leukaemia, one of the major causes of death in children.

HER2 mutations can cause treatment resistance in metastatic ER-positive breast cancer

December 11, 2018
Metastatic breast cancers treated with hormone therapy can become treatment-resistant when they acquire mutations in the human epidermal growth factor receptor 2 (HER2) that were not present in the original tumor, reports ...

Loss of two genes drives a deadly form of colorectal cancer, reveals a potential treatment

December 11, 2018
Colorectal cancers arise from earlier growths, called polyps, found on the inner surface of the colon. Scientists are now learning that polyps use two distinct molecular pathways as they progress to cancer, called the "conventional" ...

Successful anti-PD-1 therapy requires interaction between CD8+ T cells and dendritic cells

December 11, 2018
A team led by a Massachusetts General Hospital (MGH) investigator has found that successful cancer immunotherapy targeting the PD-1 molecule requires interaction between cytotoxic CD8+ T cells, which have been considered ...

Taking uncertainty out of cancer prognosis

December 11, 2018
A cancer diagnosis tells you that you have cancer, but how that cancer will progress is a terrifying uncertainty for most patients. Researchers at Cold Spring Harbor Laboratory (CSHL) have now identified a specific class ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.