Peptide-based vaccination against VEGF results in efficient antitumor activity

October 25, 2016, University of Amsterdam
Peptide-based vaccination against VEGF results in efficient antitumor activity
Representation of the folded peptide, including the intact cysteine-knot fold. Image taken from the PNAS publication. Credit: Universiteit van Amsterdam (UVA)

A research team including professor Peter Timmerman of the University of Amsterdam's Van 't Hoff Institute for Molecular Sciences (HIMS) has developed a peptide-based vaccine enabling a successful active anti-tumor immunization therapy targeting the growth hormone Vascular Endothelial Growth Factor (VEGF). Suppression of tumor growth has already been established in mice and exploratory studies in patients are now underway at VU Medical Center (Amsterdam). The encouraging preclinical results were published last week in Proceedings of the National Academy of Science.

The vascular endothelial growth factor (VEGF) is a pivotal growth factor for angiogenesis (blood vessel formation) in tumor tissue. Therefore, it has been frequently investigated as a target in anticancer therapy. Its inhibition by the monoclonal anti-VEGF antibody bevacizumab (Avastin) has already improved survival in patients with several types of cancer.

There are, however, limitations to the effectiveness of this passive immunotherapy strategy since it does not stimulate a patient's immune system to actively respond to a disease in the way a vaccine does. The starting point of the research now reported in PNAS is that a VEGF vaccination has the potential to outperform the current clinical anti-VEGF treatment strategies.

Vaccination will not only provide durable VEGF suppression, it is also expected that the induced antibodies will have superior VEGF-neutralizing ability in comparison to bevacizumab. Furthermore, vaccination requires only a few intramuscular injections and reduces the number of hospital visits in comparison to treatment with bevacizumab.

However, vaccination with intact VEGF has major drawbacks such as unwanted biological activity and weak immunogenicity. The strategy pursued in the current research therefore is to use a VEGF mimicking peptide as a vaccine. The major challenge here was to identify the minimal peptide able to generate antisera with potent VEGF-neutralizing capacity and tumor-reducing capabilities.

A total of 33 peptide mimics of VEGF with varying levels of structural complexity (linear, conformational, and discontinuous) were designed, synthesized, and tested for the ability to generate potent antisera. It was established that induction of neutralizing antibodies with tumor-growth-inhibiting power was only successful for a 3-D-structured 79-mer peptide with a fully intact cysteine-knot fold (covering the complete discontinuous binding site of bevacizumab).

Eradication of using this peptide was demonstrated in two different tumor models (mice). It thus became clear that enforcing a native-like, secondary structure in the peptide is the key to success for inducing neutralizing anti-VEGF antibodies with tumor-inhibiting power.


Professor Peter Timmerman holds the chair of Protein-mimetic Chemistry at the University of Amsterdam's Van 't Hoff Institute for Molecular Sciences (HIMS). He is Chief Scientific Officer at Pepscan (Lelystad), a global supplier of high quality peptide based products & services. Timmerman and Pepscan developed and patented the peptide-based VEGF vaccination technology in cooperation with professor Tilman M. Hackeng of Maastricht University and Arjan W. Griffioen of VU University Medical Center (VUmc, Amsterdam). The patent was licensed to Immunovo BV (тАШs-Hertogenbosch), a Dutch private biotechnology company engaged in the discovery and clinical development of oncology immunotherapeutics. The Medical Oncology Department of VUmc recently started a phase I clinical trial of the new vaccine in cooperation with Immunovo.

Explore further: A culprit behind brain tumor resistance to therapy

More information: Madelon Q. Wentink et al. Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1610258113

Related Stories

A culprit behind brain tumor resistance to therapy

March 5, 2012
Persistent protein expression may explain why tumors return after therapy in glioblastoma patients, according to a study published on March 5th in the Journal of Experimental Medicine.

Researchers detail possible resistance mechanisms of colorectal cancer to bevacizumab (Avastin)

October 28, 2013
A University of Colorado Cancer Center study published in the journal PLOS ONE shows that when colorectal cancer is targeted by the drug bevacizumab (Avastin), tumors may switch dependence from VEGF-A, which is targeted by ...

Targeting two angiogenesis pathways could improve results of glioblastoma treatment

April 4, 2016
Two companion papers from Massachusetts General Hospital (MGH) research teams suggest that targeting multiple angiogenesis pathways simultaneously could help overcome the resistance to anti-angiogenic treatment inevitably ...

Better treatment for brain cancer revealed by new molecular insights

July 9, 2012
Nearly a third of adults with the most common type of brain cancer develop recurrent, invasive tumors after being treated with a drug called bevacizumab. The molecular underpinnings behind these detrimental effects have now ...

Overcoming barriers in the quest to starve tumors of blood supply

July 13, 2016
One of the most exciting strategies researchers are pursuing for fighting cancer is to cut off the blood supply of cancerous cells. However, many initially-promising therapies have failed in part because tumor cells counteract ...

When the immune system promotes tumor growth

February 18, 2016
The immune system protects the body against cancer cells. The Elimination of cancer cells is an important task of NK cells. For NK cells to function properly, they require the activator STAT5.

Recommended for you

Scientists discover how breast cancer hibernates: study

May 22, 2018
Scientists have identified the mechanism that allows breast cancer cells to lie dormant in other parts of the body only to reemerge years later with lethal force, according to a study published Tuesday.

Researcher: Big data, networks identify cell signaling pathways in lung cancer

May 22, 2018
A team of scientists led by University of Montana cell biologist Mark Grimes has identified networks inside lung cancer cells that will help understand this cancer and fight it with drug treatments.

Resetting the epigenetic balance for cancer therapy

May 22, 2018
Though mutations in a gene called MLL3 are common across many types of cancers, their relationship to the development of the disease has been unclear. Now, a Northwestern Medicine study has identified an epigenetic imbalance ...

Downward-facing mouse: Stretching reduces tumor growth in mouse model of breast cancer

May 22, 2018
Many cancer patients seek out gentle, movement-based stretching techniques such as yoga, tai chi and qigong, but does stretching have an effect on cancer? While many animal studies have attempted to quantify the effects of ...

Compound in citrus oil could reduce dry mouth in head, neck cancer patients

May 21, 2018
A compound found in citrus oils could help alleviate dry mouth caused by radiation therapy in head and neck cancer patients, according to a new study by researchers at the Stanford University School of Medicine.

Ice cream funds research showing new strategy against thyroid cancer

May 21, 2018
Anaplastic thyroid cancer is almost uniformly fatal, with an average lifespan of about 5 months after diagnosis. And standard treatment for the condition includes 7 weeks of radiation, often along with chemotherapy.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.