Peptide-based vaccination against VEGF results in efficient antitumor activity

October 25, 2016, University of Amsterdam
Peptide-based vaccination against VEGF results in efficient antitumor activity
Representation of the folded peptide, including the intact cysteine-knot fold. Image taken from the PNAS publication. Credit: Universiteit van Amsterdam (UVA)

A research team including professor Peter Timmerman of the University of Amsterdam's Van 't Hoff Institute for Molecular Sciences (HIMS) has developed a peptide-based vaccine enabling a successful active anti-tumor immunization therapy targeting the growth hormone Vascular Endothelial Growth Factor (VEGF). Suppression of tumor growth has already been established in mice and exploratory studies in patients are now underway at VU Medical Center (Amsterdam). The encouraging preclinical results were published last week in Proceedings of the National Academy of Science.

The vascular endothelial growth factor (VEGF) is a pivotal growth factor for angiogenesis (blood vessel formation) in tumor tissue. Therefore, it has been frequently investigated as a target in anticancer therapy. Its inhibition by the monoclonal anti-VEGF antibody bevacizumab (Avastin) has already improved survival in patients with several types of cancer.

There are, however, limitations to the effectiveness of this passive immunotherapy strategy since it does not stimulate a patient's immune system to actively respond to a disease in the way a vaccine does. The starting point of the research now reported in PNAS is that a VEGF vaccination has the potential to outperform the current clinical anti-VEGF treatment strategies.

Vaccination will not only provide durable VEGF suppression, it is also expected that the induced antibodies will have superior VEGF-neutralizing ability in comparison to bevacizumab. Furthermore, vaccination requires only a few intramuscular injections and reduces the number of hospital visits in comparison to treatment with bevacizumab.

However, vaccination with intact VEGF has major drawbacks such as unwanted biological activity and weak immunogenicity. The strategy pursued in the current research therefore is to use a VEGF mimicking peptide as a vaccine. The major challenge here was to identify the minimal peptide able to generate antisera with potent VEGF-neutralizing capacity and tumor-reducing capabilities.

A total of 33 peptide mimics of VEGF with varying levels of structural complexity (linear, conformational, and discontinuous) were designed, synthesized, and tested for the ability to generate potent antisera. It was established that induction of neutralizing antibodies with tumor-growth-inhibiting power was only successful for a 3-D-structured 79-mer peptide with a fully intact cysteine-knot fold (covering the complete discontinuous binding site of bevacizumab).

Eradication of using this peptide was demonstrated in two different tumor models (mice). It thus became clear that enforcing a native-like, secondary structure in the peptide is the key to success for inducing neutralizing anti-VEGF antibodies with tumor-inhibiting power.


Professor Peter Timmerman holds the chair of Protein-mimetic Chemistry at the University of Amsterdam's Van 't Hoff Institute for Molecular Sciences (HIMS). He is Chief Scientific Officer at Pepscan (Lelystad), a global supplier of high quality peptide based products & services. Timmerman and Pepscan developed and patented the peptide-based VEGF vaccination technology in cooperation with professor Tilman M. Hackeng of Maastricht University and Arjan W. Griffioen of VU University Medical Center (VUmc, Amsterdam). The patent was licensed to Immunovo BV (тАШs-Hertogenbosch), a Dutch private biotechnology company engaged in the discovery and clinical development of oncology immunotherapeutics. The Medical Oncology Department of VUmc recently started a phase I clinical trial of the new vaccine in cooperation with Immunovo.

Explore further: A culprit behind brain tumor resistance to therapy

More information: Madelon Q. Wentink et al. Targeted vaccination against the bevacizumab binding site on VEGF using 3D-structured peptides elicits efficient antitumor activity, Proceedings of the National Academy of Sciences (2016). DOI: 10.1073/pnas.1610258113

Related Stories

A culprit behind brain tumor resistance to therapy

March 5, 2012
Persistent protein expression may explain why tumors return after therapy in glioblastoma patients, according to a study published on March 5th in the Journal of Experimental Medicine.

Researchers detail possible resistance mechanisms of colorectal cancer to bevacizumab (Avastin)

October 28, 2013
A University of Colorado Cancer Center study published in the journal PLOS ONE shows that when colorectal cancer is targeted by the drug bevacizumab (Avastin), tumors may switch dependence from VEGF-A, which is targeted by ...

Targeting two angiogenesis pathways could improve results of glioblastoma treatment

April 4, 2016
Two companion papers from Massachusetts General Hospital (MGH) research teams suggest that targeting multiple angiogenesis pathways simultaneously could help overcome the resistance to anti-angiogenic treatment inevitably ...

Better treatment for brain cancer revealed by new molecular insights

July 9, 2012
Nearly a third of adults with the most common type of brain cancer develop recurrent, invasive tumors after being treated with a drug called bevacizumab. The molecular underpinnings behind these detrimental effects have now ...

Overcoming barriers in the quest to starve tumors of blood supply

July 13, 2016
One of the most exciting strategies researchers are pursuing for fighting cancer is to cut off the blood supply of cancerous cells. However, many initially-promising therapies have failed in part because tumor cells counteract ...

When the immune system promotes tumor growth

February 18, 2016
The immune system protects the body against cancer cells. The Elimination of cancer cells is an important task of NK cells. For NK cells to function properly, they require the activator STAT5.

Recommended for you

Pancreatic cancer genetic marker may predict outcomes with radiation therapy

October 22, 2018
Pancreatic cancer is one of the most difficult cancers to treat and is a leading cause of cancer-related deaths. Now, Sidney Kimmel Cancer Center—Jefferson Health and Lankenau Institute for Medical Research scientists find ...

RNA thought to spread cancer shows ability to suppress breast cancer metastasis

October 22, 2018
Researchers at The University of Texas MD Anderson Cancer Center have discovered that a form of RNA called metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) appears to suppress breast cancer metastasis in mice, ...

Revealing the molecular mystery of human liver cells

October 22, 2018
A map of the cells in the human liver has been created by University Health Network Transplant Program and University of Toronto researchers, revealing for the first time differences between individual cells at the molecular ...

Targeting a hunger hormone to treat obesity

October 22, 2018
About 64 per cent of Canadian adults are overweight or obese, according to Health Canada. That's a problem, because obesity promotes the emergence of chronic diseases such as type 2 diabetes, heart disease and some cancers.

New tool gives deeper understanding of glioblastoma

October 22, 2018
Researchers in the lab of Charles Danko at the Baker Institute for Animal Health have developed a new tool to study genetic "switches" active in glioblastoma tumors that drive growth of the cancer. In a new paper in Nature ...

New drug combination destroys chemo-resistant blood cancer

October 22, 2018
Researchers from The Ottawa Hospital and the University of Ottawa have developed a promising targeted strategy to treat chemotherapy-resistant acute myeloid leukemia (AML) and a diagnostic test to determine which AML patients ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.