The dark side of 'junk' DNA: Repeating DNA sequences play a role in bone cancer

November 1, 2016, University of North Carolina at Chapel Hill School of Medicine
DNA
Credit: NIH

The stretches of DNA between genes, littered with repeating sequences, were once considered the "junk of the genome," but scientists are learning that some of this junk is far from harmless clutter.

Researchers at the University of North Carolina Lineberger Comprehensive Cancer Center report in the journal Cell Reports that certain short, repetitive sequences of DNA, or "junk," play an important role in the development of Ewing sarcoma, a rare bone and that occurs most commonly in children and adolescents.

"Some people may still think of these non-coding sequences as junk; that they don't really do anything but act as hangers-on to the more famous parts of the genome," said the study's senior author Ian J. Davis, MD, PHD, a pediatric oncologist and researcher at UNC Lineberger and the Denman Hammond Associate Professor in Childhood Cancer at the UNC School of Medicine. "But we found that repetitive elements contribute to cancer development for Ewing sarcoma based on traits that they share with immature cells."

For most people with Ewing sarcoma, their tumors have a mutation that creates a new gene called EWSR1-FLI1. This gene codes for a mutant protein, called an oncoprotein, that drives the cancer. But it turns out that the mutant protein does not work alone.

UNC Lineberger researchers found that specific states of DNA have enhanced susceptibility to the oncoprotein's attack. In particular, the way that repetitive DNA sequences interact with a class of proteins called histones, which act like a spool around which DNA is wrapped, offer an opportunistic environment for the oncoprotein. At certain sites, the DNA is more "open" or unwrapped around the histone spools, making them more accessible to the oncoprotein.

Davis and his collaborators discovered that the way certain repeat DNA sections interact with histones in Ewing sarcoma bore a striking similarity to that of stem cells, which are cells that haven't matured and can still become many types of cells. They believe that the looseness in the way that DNA and histones interact in stem cells and cancer cells at these repeat sites allows the oncoprotein to interact with the DNA, changing the way that many genes are expressed.

"We identified a new feature in the way the genome is organized in stem cells, and this ended up explaining a link between these and the development of Ewing sarcoma," Davis said. "This is one way we think the oncogene capitalizes on a pre-existing environment and offers some insight into why the cancer might have a very specific window during which it could develop. It's kind of like a seed and soil relationship. The oncoprotein 'seed' can only form cancer in the correct stem cell 'soil.'"

The finding builds on previous research by Davis and others that showed the oncoprotein travels to certain non-coding, repeating sequences of DNA—repeating sections that have been a source of scientific and evolutionary debate, and at one time, were called "junk." At those sites, the oncoprotein helps to keep the DNA at those sites "open," allowing for nearby genes to be read and used as a blueprint for protein construction. Many genes implicated in tumor development are located near those repeat DNA sites.

While the oncoprotein's proclivity to travel was known, the researchers couldn't explain why it traveled to certain repeats and not to other similar regions, and why the oncoprotein seemed not to be able to act in any type of cell.

"Previous studies from our lab have demonstrated increased chromatin accessibility at these repeat DNA regions," said the study's first author Nicholas Gomez, PhD, who worked on the project as a doctoral student at UNC. "What we didn't know is the state of these regions in stem cells. Interestingly, we found that those repetitive regions with the highest accessibility in mesenchymal - the possible cell of origin in this cancer—predicted the regions that the oncoprotein would bind in the cancer."

Now, Davis and colleagues are focused on identifying treatments that can alter the chromatin targeted by the Ewing sarcoma oncoprotein. As a pediatric oncologist, Davis is motivated to better understand, and possibly to improve treatment for, this cancer and others through research.

"I see children with difficult to treat and often incurable cancers in the clinic, as well as children with curable cancers that require months or sometimes years of toxic chemotherapy," he said. "The impact of these diseases and treatments on children and their families is profound. This appreciation gives me a special drive to tackle studies in the lab that to further our understanding of these diseases, and to use that information to try to advance treatments."

Explore further: Study finds link between molecular mechanisms in prostate cancer and Ewing's sarcoma

Related Stories

Study finds link between molecular mechanisms in prostate cancer and Ewing's sarcoma

October 25, 2016
Medical researchers at Indiana University Bloomington have found evidence for a link between prostate cancer, which affects millions of men age 50 and older, and Ewing's sarcoma, a rare form of cancer that affects children ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

Targeting the Ewing sarcoma family of tumors

July 1, 2011
The Max Cure Foundation and the Samuel Waxman Cancer Research Foundation have partnered to establish a fund in pediatric cancer research. With that goal in mind, the two Foundations are proud to announce the award of $100,000 ...

Single genetic abnormality accelerates, removes the brakes on Ewing sarcoma tumor growth

December 16, 2014
The genetic abnormality that drives the bone cancer Ewing sarcoma operates through two distinct processes - both activating genes that stimulate tumor growth and suppressing those that should keep cancer from developing. ...

New compounds may aid in development of targeted therapies for a rare pediatric cancer

March 30, 2016
Two recently discovered compounds have shown promise in preclinical studies for treating Ewing sarcoma, a rare cancer that predominantly affects children and adolescents.

Protein associated with childhood cancer alters the structure of DNA, leading to cancer

November 18, 2011
UNC scientists have demonstrated for the first time how a critical gene associated with a type of childhood cancer alters the way DNA is packaged in cells and leads to cancer. Their laboratory discovery could result in the ...

Recommended for you

Research could help fine-tune cancer treatment

May 25, 2018
Cancer therapies that cut off blood supply to a tumour could be more effective in combination with existing chemotherapeutic drugs—according to new research from the University of East Anglia.

Increasing physical activity linked to better immunity in breast cancer patients, study finds

May 25, 2018
A new study from the University of Toronto's Faculty of Kinesiology & Physical Education has found that moderate to vigorous physical activity may help regulate the levels of C-reactive protein – an important biomarker ...

Fully reprogrammed virus offers new hope as cancer treatment

May 25, 2018
A cancer treatment that can completely destroy cancer cells without affecting healthy cells could soon be a possibility, thanks to research led by Cardiff University.

Study finds gut microbiome can control antitumor immune function in liver

May 24, 2018
Scientists have found a connection between bacteria in the gut and antitumor immune responses in the liver. Their study, published May 25 in Science, was led by researchers in the Center for Cancer Research (CCR) at the National ...

Low-fat diet tied to better breast cancer survival

May 24, 2018
(HealthDay)—Breast cancer patients who adopted a low-fat diet were more likely to survive for at least a decade after diagnosis, compared to patients who ate fattier fare, new research shows.

A cascade of immune processes offers insights to triple-negative breast cancer

May 24, 2018
Cancer is crafty. To survive and thrive, tumors find a way of thwarting our body's natural systems.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.