The dark side of 'junk' DNA: Repeating DNA sequences play a role in bone cancer

November 1, 2016, University of North Carolina at Chapel Hill School of Medicine
DNA
Credit: NIH

The stretches of DNA between genes, littered with repeating sequences, were once considered the "junk of the genome," but scientists are learning that some of this junk is far from harmless clutter.

Researchers at the University of North Carolina Lineberger Comprehensive Cancer Center report in the journal Cell Reports that certain short, repetitive sequences of DNA, or "junk," play an important role in the development of Ewing sarcoma, a rare bone and that occurs most commonly in children and adolescents.

"Some people may still think of these non-coding sequences as junk; that they don't really do anything but act as hangers-on to the more famous parts of the genome," said the study's senior author Ian J. Davis, MD, PHD, a pediatric oncologist and researcher at UNC Lineberger and the Denman Hammond Associate Professor in Childhood Cancer at the UNC School of Medicine. "But we found that repetitive elements contribute to cancer development for Ewing sarcoma based on traits that they share with immature cells."

For most people with Ewing sarcoma, their tumors have a mutation that creates a new gene called EWSR1-FLI1. This gene codes for a mutant protein, called an oncoprotein, that drives the cancer. But it turns out that the mutant protein does not work alone.

UNC Lineberger researchers found that specific states of DNA have enhanced susceptibility to the oncoprotein's attack. In particular, the way that repetitive DNA sequences interact with a class of proteins called histones, which act like a spool around which DNA is wrapped, offer an opportunistic environment for the oncoprotein. At certain sites, the DNA is more "open" or unwrapped around the histone spools, making them more accessible to the oncoprotein.

Davis and his collaborators discovered that the way certain repeat DNA sections interact with histones in Ewing sarcoma bore a striking similarity to that of stem cells, which are cells that haven't matured and can still become many types of cells. They believe that the looseness in the way that DNA and histones interact in stem cells and cancer cells at these repeat sites allows the oncoprotein to interact with the DNA, changing the way that many genes are expressed.

"We identified a new feature in the way the genome is organized in stem cells, and this ended up explaining a link between these and the development of Ewing sarcoma," Davis said. "This is one way we think the oncogene capitalizes on a pre-existing environment and offers some insight into why the cancer might have a very specific window during which it could develop. It's kind of like a seed and soil relationship. The oncoprotein 'seed' can only form cancer in the correct stem cell 'soil.'"

The finding builds on previous research by Davis and others that showed the oncoprotein travels to certain non-coding, repeating sequences of DNA—repeating sections that have been a source of scientific and evolutionary debate, and at one time, were called "junk." At those sites, the oncoprotein helps to keep the DNA at those sites "open," allowing for nearby genes to be read and used as a blueprint for protein construction. Many genes implicated in tumor development are located near those repeat DNA sites.

While the oncoprotein's proclivity to travel was known, the researchers couldn't explain why it traveled to certain repeats and not to other similar regions, and why the oncoprotein seemed not to be able to act in any type of cell.

"Previous studies from our lab have demonstrated increased chromatin accessibility at these repeat DNA regions," said the study's first author Nicholas Gomez, PhD, who worked on the project as a doctoral student at UNC. "What we didn't know is the state of these regions in stem cells. Interestingly, we found that those repetitive regions with the highest accessibility in mesenchymal - the possible cell of origin in this cancer—predicted the regions that the oncoprotein would bind in the cancer."

Now, Davis and colleagues are focused on identifying treatments that can alter the chromatin targeted by the Ewing sarcoma oncoprotein. As a pediatric oncologist, Davis is motivated to better understand, and possibly to improve treatment for, this cancer and others through research.

"I see children with difficult to treat and often incurable cancers in the clinic, as well as children with curable cancers that require months or sometimes years of toxic chemotherapy," he said. "The impact of these diseases and treatments on children and their families is profound. This appreciation gives me a special drive to tackle studies in the lab that to further our understanding of these diseases, and to use that information to try to advance treatments."

Explore further: Study finds link between molecular mechanisms in prostate cancer and Ewing's sarcoma

Related Stories

Study finds link between molecular mechanisms in prostate cancer and Ewing's sarcoma

October 25, 2016
Medical researchers at Indiana University Bloomington have found evidence for a link between prostate cancer, which affects millions of men age 50 and older, and Ewing's sarcoma, a rare form of cancer that affects children ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

Targeting the Ewing sarcoma family of tumors

July 1, 2011
The Max Cure Foundation and the Samuel Waxman Cancer Research Foundation have partnered to establish a fund in pediatric cancer research. With that goal in mind, the two Foundations are proud to announce the award of $100,000 ...

Single genetic abnormality accelerates, removes the brakes on Ewing sarcoma tumor growth

December 16, 2014
The genetic abnormality that drives the bone cancer Ewing sarcoma operates through two distinct processes - both activating genes that stimulate tumor growth and suppressing those that should keep cancer from developing. ...

New compounds may aid in development of targeted therapies for a rare pediatric cancer

March 30, 2016
Two recently discovered compounds have shown promise in preclinical studies for treating Ewing sarcoma, a rare cancer that predominantly affects children and adolescents.

Protein associated with childhood cancer alters the structure of DNA, leading to cancer

November 18, 2011
UNC scientists have demonstrated for the first time how a critical gene associated with a type of childhood cancer alters the way DNA is packaged in cells and leads to cancer. Their laboratory discovery could result in the ...

Recommended for you

From the ashes of a failed pain drug, a new therapeutic path emerges

November 16, 2018
In 2013, renowned Boston Children's Hospital pain researcher Clifford Woolf, MB, BCh, Ph.D., and chemist Kai Johnsson, Ph.D., his fellow co-founder at Quartet Medicine, believed they held the key to non-narcotic pain relief. ...

Repurposing FDA-approved drugs can help fight back breast cancer

November 16, 2018
Screening Food and Drug Administration (FDA)-approved compounds for their ability to stop cancer growth in the lab led to the finding that the drug flunarizine can slow down the growth of triple-negative breast cancer in ...

Traditional chemotherapy superior to new alternative for oropharyngeal cancers

November 16, 2018
A drug increasingly used in combination with radiotherapy to treat a type of cancer that forms in the tonsils or the base of the tongue is inferior to a previously favored option, according to a large, clinical trial led ...

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.