New drug limits and then repairs brain damage in stroke

November 25, 2016
Micrograph showing cortical pseudolaminar necrosis, a finding seen in strokes on medical imaging and at autopsy. H&E-LFB stain. Credit: Nephron/Wikipedia

Researchers at The University of Manchester have discovered that a potential new drug reduces the number of brain cells destroyed by stroke and then helps to repair the damage.

A reduction in blood flow to the brain caused by is a major cause of death and disability, and there are few effective treatments.

A team of scientists at The University of Manchester has now found that a potential new stroke drug not only works in rodents by limiting the death of existing brain cells but also by promoting the birth of new neurones (so-called neurogenesis).

This finding provides further support for the development of this anti-inflammatory drug, interleukin-1 receptor antagonist (IL-1Ra in short), as a new treatment for stroke. The drug is already licensed for use in humans for some conditions, including rheumatoid arthritis. Several clinical trials in stroke with IL-1Ra have already been completed in Manchester, though it is not yet licensed for this condition.

In the research, published in the biomedical journal Brain, Behavior and Immunity, the researchers show that in rodents with a stroke there is not only reduced brain damage early on after the stroke, but several days later increased numbers of new neurones, when treated with the anti-inflammatory drug IL-1Ra.

Previous attempts to find a to prevent after stroke have proved unsuccessful and this new research offers the possibility of a new treatment.

Importantly, the use of IL-1Ra might be better than other failed drugs in stroke as it not only limits the initial damage to brain cells, but also helps the brain repair itself long-term through the generation of new .

These new cells are thought to help restore function to areas of the brain damaged by the stroke. Earlier work by the same group showed that treatment with IL-1Ra does indeed help rodents regain motor skills that were initially lost after a stroke. Early stage clinical trials in also suggest that IL-1Ra could be beneficial.

The current research is led by Professor Stuart Allan, who commented: "The results lend further strong support to the use of IL-1Ra in the treatment of stroke, however further large trials are necessary."

The paper, 'Reparative effects of interleukin-1 receptor antagonist in young and aged/co-morbid rodents after cerebral ischemia', was published in the journal Brain, Behavior and Immunity.

Explore further: Outcome of stroke worse for people with infection

More information: Jesus.M. Pradillo et al, Reparative Effects of Interleukin-1 Receptor Antagonist in Young And Aged/Co-Morbid Rodents After Cerebral Ischemia, Brain, Behavior, and Immunity (2016). DOI: 10.1016/j.bbi.2016.11.013

Related Stories

Outcome of stroke worse for people with infection

April 15, 2014
(Medical Xpress)—A team of scientists at the University of Manchester has now found a key to why and how infection is such a bad thing for stroke sufferers

Researchers use video game-like test to study learning and recovery in stroke patients

October 27, 2016
A robotic arm and a virtual game were essential tools in a new study from researchers at Johns Hopkins Medicine. The study results suggest that while training doesn't change neurological repair in chronic stroke patients, ...

Anti-inflammatory chemical could prevent stroke damage

December 5, 2011
(Medical Xpress) -- Drugs that block inflammation in the brain could help patients who have a stroke or a brain haemorrhage, Manchester scientists said today (5 December) at the British Society for Immunology Congress in ...

Scientists make surprising finding in stroke research

March 16, 2015
Scientists at The University of Manchester have made an important new discovery about the brain's immune system that could lead to potential new treatments for stroke and other related conditions.

New stroke treatments becoming a reality

July 26, 2012
Scientists led by the President of The University of Manchester have demonstrated a drug which can dramatically limit the amount of brain damage in stroke patients.

Stroke-like brain damage is reduced in mice injected with omega-3s

August 22, 2016
Researchers from Columbia University Medical Center (CUMC) found that omega-3 fatty acids reduced brain damage in a neonatal mouse model of stroke.

Recommended for you

Research redefines proteins' role in the development of spinal sensory cells

September 19, 2017
A recent study led by Samantha Butler at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA has overturned a common belief about how a certain class of proteins in the spinal cord regulate ...

Team discovers how to train damaging inflammatory cells to promote repair after stroke

September 19, 2017
White blood cells called neutrophils are like soldiers in your body that form in the bone marrow and at the first sign of microbial attack, head for the site of injury just as fast as they can to neutralize invading bacteria ...

The brain at work: Spotting half-hidden objects

September 19, 2017
How does a driver's brain realize that a stop sign is behind a bush when only a red edge is showing? Or how can a monkey suspect that the yellow sliver in the leaves is a round piece of fruit?

Epileptic seizures show long-distance effects

September 19, 2017
The area in which an epileptic seizure starts in the brain, may be small but it reaches other parts of the brain at distances of over ten centimeters. That distant activity, in turn, influences the epileptic core, according ...

Study uncovers markers for severe form of multiple sclerosis

September 18, 2017
Scientists have uncovered two closely related cytokines—molecules involved in cell communication and movement—that may explain why some people develop progressive multiple sclerosis (MS), the most severe form of the disease. ...

Learning and unlearning to fear: The two faces of noradrenaline

September 18, 2017
Emotional learning can create strong memories and powerful emotional responses, but flexible behavior demands that these responses be inhibited when they are no longer appropriate. Scientists at the RIKEN Brain Science Institute ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

TheGhostofOtto1923
4.5 / 5 (2) Nov 26, 2016
This sounds suspiciously like something a whole lot bigger. Most of our brains have things wrong with them. Genetic deformity, damage from chemicals, disease, trauma, malnutrition. Could we be on the verge of something that could re-optimize them?

If we can restore mental health by fixing broken brains, people would no longer have ADHD. They could concentrate and remember, and control their compulsions.

Perhaps we could even give psychopaths the emotions they never had. But then they may be doomed to unremitting self-disgust for the things they've done and terror that their victims would be seeking them out.

Revenge is the healthiest of emotions.

They probably couldn't even pray for forgiveness because if everybody's brain was healthy, religion would probably disappear.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.