Stroke-like brain damage is reduced in mice injected with omega-3s

August 22, 2016, Columbia University Medical Center
Credit: martha sexton/public domain

Researchers from Columbia University Medical Center (CUMC) found that omega-3 fatty acids reduced brain damage in a neonatal mouse model of stroke.

Findings from the study were published recently in PLOS ONE.

The researchers treated 10-day-old mice that had incurred hypoxic-ischemic injury (caused by a decrease in and oxygen to the brain, as occurs during a stroke) with a fat emulsion containing either DHA or EPA— that are found in certain foods and in supplements. The researchers evaluated the mice's neurological function 24 hours and 8 to 9 weeks after the brain injury.

EPA and DHA are bioactive omega-3 fatty acids that are found in oils extracted from cold-water fish. The CUMC researchers and other scientists have shown that these fish-oil protect organs and cells in numerous ways after oxygen deprivation, reducing inflammation and cell death.

At 24 hours, mice treated with DHA, but not EPA, had a significant reduction in brain injury. In the following weeks, the DHA group also had significantly better results in multiple brain functions compared to the EPA-treated mice and untreated (control) mice.

The researchers also discovered that these mice had increased concentrations of DHA in their brain mitochondria, energy-producing structures in cells that can be injured by free radicals when blood flow is restored to the brain after a stroke. This process, known as reperfusion injury, is a common cause of following the oxygen and nutrient deprivation that occurs after a stroke.

"Our findings suggest that injecting the omega-3 fatty acid DHA after a stroke-like event has the ability to protect brain mitochondria against the damaging effects of free radicals," said senior co-author, Vadim S. Ten, MD, PhD, associate professor of pediatrics at CUMC.

Interruption of blood flow and oxygen supply to the brain during or shortly after birth is a major cause of brain damage in newborns, causing life-long neurological impairments in more than 25 percent of those affected. Many of the pathways involved in this type of brain damage are similar to those in an adult stroke.

"Clinical trials are needed to determine if administering lipid emulsions containing DHA shortly after a stroke-like offers the same neuroprotective effects in babies and adults, as seen in . If successful, such trials could lead to the development of a novel therapy for stroke in newborns, children, and adults, addressing a major medical need," said senior co-author Richard J. Deckelbaum, MD, CM, the Robert R. Williams Professor of Nutrition (in Pediatrics) and Professor of Epidemiology and director of the Institute of Nutrition at CUMC.

The study is titled, "DHA but Not EPA Emulsions Preserve Neurological and Mitochondrial Function after Brain Hypoxia-Ischemia in Neonatal Mice."

Explore further: Omega-3 lipid emulsions markedly protect brain after stroke in mouse study

Related Stories

Omega-3 lipid emulsions markedly protect brain after stroke in mouse study

February 20, 2013
Triglyceride lipid emulsions rich in an omega-3 fatty acid injected within a few hours of an ischemic stroke can decrease the amount of damaged brain tissue by 50 percent or more in mice, reports a new study by researchers ...

Omega-3s reduce stroke severity

August 25, 2011
A diet rich in omega-3s reduces the severity of brain damage after a stroke, according to a study conducted by Université Laval researchers. The team, co-directed by professors Jasna Kriz and Frédéric Calon, ...

Novel lipid mediators may play role in omega-3 PUFA effects

June 25, 2016
(HealthDay)—Novel lipid mediators may be involved in the beneficial effects associated with omega-3 polyunsaturated fatty acids (PUFAs) in obesity, according to a study published online June 16 in Diabetes.

Low levels of omega-3 fatty acids may cause memory problems

February 27, 2012
A diet lacking in omega-3 fatty acids, nutrients commonly found in fish, may cause your brain to age faster and lose some of its memory and thinking abilities, according to a study published in the February 28, 2012, print ...

Omega-3 dietary supplements pass the blood-brain barrier

December 4, 2013
(Medical Xpress)—New research from Karolinska Institutet shows that omega-3 fatty acids in dietary supplements can cross the blood brain barrier in people with Alzheimer's disease, affecting known markers for both the disease ...

Study links omega-3s to reduced mortality

June 22, 2016
A recent meta-analysis in Scientific Reports supports a link between EPA and DHA omega-3 intake and a reduced risk of death by any cause. The meta-analysis included 11 studies involving 371,965 participants and 31,185 death ...

Recommended for you

Animal study connects fear behavior, rhythmic breathing, brain smell center

April 20, 2018
"Take a deep breath" is the mantra of every anxiety-reducing advice list ever written. And for good reason. There's increasing physiological evidence connecting breathing patterns with the brain regions that control mood ...

Mechanism behind neuron death in motor neurone disease and frontotemporal dementia discovered

April 20, 2018
Scientists have identified the molecular mechanism that leads to the death of neurons in amyotrophic lateral sclerosis (also known as ALS or motor neurone disease) and a common form of frontotemporal dementia.

When there's an audience, people's performance improves

April 20, 2018
Often, people think performing in front of others will make them mess up, but a new study led by a Johns Hopkins University neuroscientist found the opposite: being watched makes people do better.

Signaling between neuron types found to instigate morphological changes during early neocortex development

April 20, 2018
A team of researchers from several institutions in Japan has found that developing neocortex neurons in mammals undergo a morphological transition from a multipolar shape to a bipolar shape due at least partially to signaling ...

MRI technique detects spinal cord changes in MS patients

April 20, 2018
A Vanderbilt University Medical Center-led research team has shown that magnetic resonance imaging (MRI) can detect changes in resting-state spinal cord function in patients with multiple sclerosis (MS).

Gene variant increases empathy-driven fear in mice

April 20, 2018
Researchers at the Center for Cognition and Sociality, within the Institute for Basic Science (IBS), have just published as study in Neuron reporting a genetic variant that controls and increases empathy-driven fear in mice. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.