Scientists successfully create blood from skin cells

November 21, 2016 by Joyce Ang
Scientists successfully create blood from skin cells
Making blood from skin cells through direct reprogramming. Credit: A*STAR's Genome Institute of Singapore

Researchers in Singapore have artificially generated new mouse blood and immune cells from skin cells. This is a significant first step towards the eventual goal: the engineering of new human blood cells from skin cells or other artificial sources.

One of the major challenges of regenerative medicine is to manufacture new blood and for patients in need. This development could lead to a robust source of new blood or immune becoming available to treat patients with immune disorders and other such diseases, or those who require blood transfusions.

While there were previous efforts to generate new mouse from skin cells, the yielded cells could last only two weeks once injected back into mice. In contrast, the artificially skin-derived blood cells in this study can last for multiple months in mice. Published in scientific journal Nature Communications, this study was led by researchers from A*STAR's Genome Institute of Singapore (GIS) and Institute of Molecular and Cell Biology (IMCB).

To date, the researchers have identified a cocktail of four factors that can convert mouse skin cells into different types of blood cells. By introducing the four factors that are normally active in blood cells into skin cells, they could artificially 'rewrite' skin cells to adopt features of blood cells.

"On the face of it, and blood cells couldn't be more different from one another. We have been interested in whether it might be possible to rewrite the identity of cells, specifically to turn skin into blood," said the study's first author Dr Cheng Hui, who initiated this project as a postdoctoral fellow at GIS.

"This is not only of practical importance for regenerative medicine in terms of potentially yielding a source of new blood or immune cells, but it is also interesting from a fundamental biological perspective that two very different cells - like skin and blood - can be interconverted," added Dr Kyle Loh, currently an investigator and instructor at Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, and a member of the project team as a former GIS intern.

GIS Executive Director Prof Ng Huck Hui said, "This development could be a potential game-changer for . If researchers are able to extend what they did with the mice to in the foreseeable future, it can translate into tangible benefits for the patients in need."

Explore further: Understanding the origins and function of CD14+ immune cells

More information: Hui Cheng et al. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors, Nature Communications (2016). DOI: 10.1038/ncomms13396

Related Stories

Understanding the origins and function of CD14+ immune cells

February 4, 2015
Dendritic cells and macrophages are immune cells that orchestrate diverse immune functions within many body tissues, including the skin. New work by A*STAR researchers and colleagues shows that CD14+ cells in the skin—long ...

Cells discovered in mouse embryos could shed light on newborn skin immunity

April 20, 2016
A group of cells identified by A*STAR researchers may explain how a newborn baby's vulnerable skin defends against attacks to the immune system at first contact with the environment. In mice, these cells appear in a developing ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Researchers report insights into blood stem cells from engineered stem cells

March 8, 2016
Building upon previous work, researchers at the Icahn School of Medicine at Mount Sinai identified cells in the embryos of mice that are precursors to blood stem cells or hematopoietic stem/progenitor cells (HSPCs). In previous ...

Recommended for you

Estrogen discovery could shed new light on fertility problems

December 12, 2017
Estrogen produced in the brain is necessary for ovulation in monkeys, according to researchers at the University of Wisconsin-Madison who have upended the traditional understanding of the hormonal cascade that leads to release ...

Time of day affects severity of autoimmune disease

December 12, 2017
Insights into how the body clock and time of day influence immune responses are revealed today in a study published in leading international journal Nature Communications. Understanding the effect of the interplay between ...

3-D printed microfibers could provide structure for artificially grown body parts

December 12, 2017
Much as a frame provides structural support for a house and the chassis provides strength and shape for a car, a team of Penn State engineers believe they have a way to create the structural framework for growing living tissue ...

Team identifies DNA element that may cause rare movement disorder

December 11, 2017
A team of Massachusetts General Hospital (MGH) researchers has identified a specific genetic change that may be the cause of a rare but severe neurological disorder called X-linked dystonia parkinsonism (XDP). Occurring only ...

Protein Daple coordinates single-cell and organ-wide directionality in the inner ear

December 11, 2017
Humans inherited the capacity to hear sounds thanks to structures that evolved millions of years ago. Sensory "hair cells" in the inner ear have the amazing ability to convert sound waves into electrical signals and transmit ...

Gene therapy improves immunity in babies with 'bubble boy' disease

December 9, 2017
Early evidence suggests that gene therapy developed at St. Jude Children's Research Hospital will lead to broad protection for infants with the devastating immune disorder X-linked severe combined immunodeficiency disorder. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.