Scientists successfully create blood from skin cells

November 21, 2016 by Joyce Ang
Scientists successfully create blood from skin cells
Making blood from skin cells through direct reprogramming. Credit: A*STAR's Genome Institute of Singapore

Researchers in Singapore have artificially generated new mouse blood and immune cells from skin cells. This is a significant first step towards the eventual goal: the engineering of new human blood cells from skin cells or other artificial sources.

One of the major challenges of regenerative medicine is to manufacture new blood and for patients in need. This development could lead to a robust source of new blood or immune becoming available to treat patients with immune disorders and other such diseases, or those who require blood transfusions.

While there were previous efforts to generate new mouse from skin cells, the yielded cells could last only two weeks once injected back into mice. In contrast, the artificially skin-derived blood cells in this study can last for multiple months in mice. Published in scientific journal Nature Communications, this study was led by researchers from A*STAR's Genome Institute of Singapore (GIS) and Institute of Molecular and Cell Biology (IMCB).

To date, the researchers have identified a cocktail of four factors that can convert mouse skin cells into different types of blood cells. By introducing the four factors that are normally active in blood cells into skin cells, they could artificially 'rewrite' skin cells to adopt features of blood cells.

"On the face of it, and blood cells couldn't be more different from one another. We have been interested in whether it might be possible to rewrite the identity of cells, specifically to turn skin into blood," said the study's first author Dr Cheng Hui, who initiated this project as a postdoctoral fellow at GIS.

"This is not only of practical importance for regenerative medicine in terms of potentially yielding a source of new blood or immune cells, but it is also interesting from a fundamental biological perspective that two very different cells - like skin and blood - can be interconverted," added Dr Kyle Loh, currently an investigator and instructor at Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, and a member of the project team as a former GIS intern.

GIS Executive Director Prof Ng Huck Hui said, "This development could be a potential game-changer for . If researchers are able to extend what they did with the mice to in the foreseeable future, it can translate into tangible benefits for the patients in need."

Explore further: Understanding the origins and function of CD14+ immune cells

More information: Hui Cheng et al. Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors, Nature Communications (2016). DOI: 10.1038/ncomms13396

Related Stories

Understanding the origins and function of CD14+ immune cells

February 4, 2015
Dendritic cells and macrophages are immune cells that orchestrate diverse immune functions within many body tissues, including the skin. New work by A*STAR researchers and colleagues shows that CD14+ cells in the skin—long ...

Cells discovered in mouse embryos could shed light on newborn skin immunity

April 20, 2016
A group of cells identified by A*STAR researchers may explain how a newborn baby's vulnerable skin defends against attacks to the immune system at first contact with the environment. In mice, these cells appear in a developing ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Researchers report insights into blood stem cells from engineered stem cells

March 8, 2016
Building upon previous work, researchers at the Icahn School of Medicine at Mount Sinai identified cells in the embryos of mice that are precursors to blood stem cells or hematopoietic stem/progenitor cells (HSPCs). In previous ...

Recommended for you

After a half-century of attempts, psilocybin has finally been synthesized in the lab

August 16, 2017
A team of researchers at Friedrich Schiller University Jena has figured how out to make psilocybin, the chemical responsible for creating hallucinations in people who consume the mushrooms that produce it naturally. In their ...

The unexpected role of a well-known gene in creating blood

August 16, 2017
One of the first organ systems to form and function in the embryo is the cardiovascular system: in fact, this developmental process starts so early that scientists still have many unresolved questions on the origin of the ...

Researchers unlock clues to how cells move through the body

August 16, 2017
During its 120-day cycle the circulatory system transports red blood cells and nutrients throughout the human body. This system helps keep the body in balance and fight against infections and diseases by filtering old or ...

Using barcodes to trace cell development

August 16, 2017
How do the multiple different cell types in the blood develop? Scientists have been pursuing this question for a long time. According to the classical model, different developmental lines branch out like in a tree. The tree ...

Eating habits affect skin's protection against sun

August 15, 2017
Sunbathers may want to avoid midnight snacks before catching some rays.

Chewing gum rapid test for inflammation

August 15, 2017
Dental implants occasionally entail complications. Six to 15 percent of patients develop an inflammatory response in the years after receiving a dental implant. This is caused by bacteria destroying the soft tissue and the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.