Food supplement may be key to treatment of rare disease

December 21, 2016, Tel Aviv University
Credit: Tel Aviv University

A new Tel Aviv University study finds that a popular food supplement called phosphatidylserine may be instrumental in reversing the detrimental effects of Familial Dysautonomia (FD), a debilitating neurodegenerative disorder that affects approximately 1 in 31 Jewish people of Eastern European, or Ashkenazi, ancestry. FD affects aspects of the autonomic nervous system such as swallowing, sweating, and pain sensitivity, and places patients at increased risk for pulmonary and gastrointestinal complications.

The research, led jointly by Prof. Gil Ast and Prof. Eran Perlson of TAU's Sackler School of Medicine, generated a of FD to examine the neuron degeneration caused by FD and to observe the positive effects of the novel therapy. The study was published in PLOS Genetics.

Trucks, highways, and neurons

"Neurons are the longest cells in our body," said Prof. Ast. "'Highways' along our neurons allow 'trucks' with 'cargo' to supply our neurons with essential supplies. In most neurodegenerative diseases these —called microtubules—and the axonal transport process are impaired. Our study demonstrates that alterations in the stability of microtubules and disruptions in the transport may lead to FD."

The research team, including Shiran Naftelberg-Blonder and other TAU students, generated a mouse model of FD. The mice exhibited symptoms similar to those experienced by human patients with FD, including developmental delays, sensory abnormalities, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor.

"We found that in neurons from our FD mice, the microtubular highways were impaired by elevated levels of an enzyme called HDAC6," said Prof. Ast. "This impairment removed the adhesive that connects the 'bricks' of the highway. This led to less stabilized highways and to the slower movement of cargo along it."

Once the mouse exhibiting FD symptoms was generated, the researchers administered a phosphatidylserine treatment, which lowered the level of the enzyme that removed the "glue" from the "bricks" of the microtubular highways. Phosphatidylserine contains both amino acids and fatty acids and is known to be effective in slowing down long-term memory loss.

Finding a "path" to treatment

The researchers found that the treatment with phosphatidylserine enhanced the stability of the microtubular "highways" and improved the movement of "cargo" along these pathways. "We identified the molecular pathway that leads to neurodegeneration in FD and demonstrated that phosphatidylserine has the potential to slow progression of neurodegeneration," said Prof. Ast.

"Phosphatidylserine can repair the activity in from the FD mouse by reducing the amount of the enzyme that removes the 'glue' from the 'bricks,'" Prof. Ast continued. "This elevates the stability of the 'highways' and increases essential cargo movement along these neurological pathways."

The researchers are currently researching ways of improving the delivery of phosphatidylserine to the nervous system. Teva Pharmaceuticals contributed support for this research through the National Network of Excellence.

Explore further: Common food supplement fights degenerative brain disorders

More information: Shiran Naftelberg et al, Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia, PLOS Genetics (2016). DOI: 10.1371/journal.pgen.1006486

Related Stories

Common food supplement fights degenerative brain disorders

May 21, 2013
Widely available in pharmacies and health stores, phosphatidylserine is a natural food supplement produced from beef, oysters, and soy. Proven to improve cognition and slow memory loss, it's a popular treatment for older ...

Potential Alzheimer's medication shows promise in mouse model of neurodegenerative disease

December 19, 2016
Memory loss and other cognitive symptoms of Alzheimer's disease are attributed, in part, to the degeneration of acetylcholine-producing neurons. Acetylcholinesterase inhibitors are a common treatment for patients with Alzheimer's; ...

Huntington's disease protein controls movement of precious cargo inside cells, study finds

October 16, 2015
We've known for years that the Huntingtin protein (Htt) is responsible for Huntington's disease, a neurodegenerative disorder that diminishes a person's mental and physical abilities.

Recommended for you

Genes contribute to biological motion perception and its covariation with autistic traits

January 22, 2018
Humans can readily perceive and recognize the movements of a living creature, based solely on a few point-lights tracking the motion of the major joints. Such exquisite sensitivity to biological motion (BM) signals is essential ...

Researchers identify gene responsible for mesenchymal stem cells' stem-ness'

January 22, 2018
Many doctors, researchers and patients are eager to take advantage of the promise of stem cell therapies to heal damaged tissues and replace dysfunctional cells. Hundreds of ongoing clinical trials are currently delivering ...

Peers' genes may help friends stay in school, new study finds

January 18, 2018
While there's scientific evidence to suggest that your genes have something to do with how far you'll go in school, new research by a team from Stanford and elsewhere says the DNA of your classmates also plays a role.

Two new breast cancer genes emerge from Lynch syndrome gene study

January 18, 2018
Researchers at Columbia University Irving Medical Center and NewYork-Presbyterian have identified two new breast cancer genes. Having one of the genes—MSH6 and PMS2—approximately doubles a woman's risk of developing breast ...

A centuries-old math equation used to solve a modern-day genetics challenge

January 18, 2018
Researchers developed a new mathematical tool to validate and improve methods used by medical professionals to interpret results from clinical genetic tests. The work was published this month in Genetics in Medicine.

Can mice really mirror humans when it comes to cancer?

January 18, 2018
A new Michigan State University study is helping to answer a pressing question among scientists of just how close mice are to people when it comes to researching cancer.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.