Crohn's disease risk and prognosis determined by different genes, study finds

January 9, 2017
High magnification micrograph of Crohn's disease. Biopsy of esophagus. H&E stain. Credit: Nephron/Wikipedia

Researchers have identified a series of genetic variants that affect the severity of Crohn's disease, an inflammatory bowel disease - but surprisingly, none of these variants appear to be related to an individual's risk of developing the condition in the first place.

Crohn's is one of a number of chronic 'complex' diseases for which there is no single gene that causes the disease. In fact, to date around 170 common genetic variants have been identified that each increase the risk of an individual developing the disease. The conventional wisdom has been that there exists a 'tipping point': if someone has enough of these genes, they become very likely to develop the disease - and the more of the variants they carry, the more the severe the disease will then be.

However, in a study published today in Nature Genetics, a team of researchers led by the University of Cambridge has shown that this is not the case: genetic variants that affect the progression, or prognosis, of a disease operate independently of those that increase the likelihood of developing the disease in the first place.

"Genetic studies have been very successful at identifying for Crohn's disease, but have told us virtually nothing about why one person will get only mild disease while someone else might need surgery to treat their condition," says Dr James Lee from the Department of Medicine at Cambridge. "We do know, though, that family members who have the disease often tend to see it progress in a similar way. This suggested to us that genetics was likely to be involved in prognosis."

The researchers looked at the genomes - the entire genetic makeup - of more than 2,700 individuals, who were selected because they had either had experienced particularly mild or particularly aggressive Crohn's disease. By comparing these patients' DNA, the researchers found four genetic variants that influenced the severity of a patient's condition. Strikingly, none of these genes have been shown to affect the risk of developing the disease.

The team then looked at all the known genetic risk variants for Crohn's and found that none of these influenced the severity of disease.

"This shows us that the genetic architecture of disease outcome is very different to that of ," adds Professor Ken Smith, Head of the Department of Medicine. "In other words, the biological pathways driving disease progression may be very different to those that initiate the disease itself. This was quite unexpected. Past work has focussed on discovering genes underlying disease initiation, and our work suggests these may no longer be relevant by the time a patient sees the doctor. We may have to consider directing new therapies to quite different pathways in order to treat established disease"

One of the genetic variants discovered by the team was in a gene called FOXO3. This gene is involved in modulating the release of the cytokine TNFα - cytokines are proteins released into the blood by in response to infection or, in the case of conditions such as Crohn's, to the body erroneously attacking itself. This FOXO3-TNFα pathway is also known to affect the severity of rheumatoid arthritis, another auto-inflammatory disease.

Another of the variants was close to the gene IGFBP1, which is known to play a role in the immune system. This genetic region, too, has previously been linked to rheumatoid arthritis, in a study looking at the presence of a particular antibody in patients - presence of this antibody is associated with more severe disease.

The third genetic variant was in the MHC region, which is responsible for determining how our immune cells respond to invading organisms. This region has been implicated in a number of auto-immune diseases, including Crohn's, but the genetic variant that alters Crohn's disease risk is different to the one that affects prognosis. The variant the team identified, which was associated with a milder course of Crohn's disease, was shown to affect multiple genes in this region, and result in a state that is known to cause weaker immune responses.

The final variant occurred in the gene XACT, about which very little is known; however, in adults this gene appears to be mainly active in cells in the intestine - the organ affected by Crohn's disease.

"This discovery has shown us a new way of looking at disease and opens up potential new treatment options, which could substantially ease the burden of Crohn's disease," says Dr Lee. "What's more, we have evidence that some of these prognosis genes will be shared with other diseases, and as such this approach could be used to improve treatment in a number of conditions."

The study has been welcomed by Crohn's and Colitis UK, who helped fund the study. "This is an exciting breakthrough which offers new hope for people who suffer every day from Crohn's and Colitis," says Dr Wendy Edwards, Research Manager at Crohn's and Colitis UK. "The research sheds new light on why some people with experience more severe symptoms than others which has been little understood until now."

As well as its implications for Crohn's and other diseases, the approach taken by the researchers has suggested that there is value in re-examining previous . Around a third of the genomes of Crohn's disease patients analysed in this study had been collected for a previous study in 2007. By dividing the patients into groups categorised by disease severity, the researchers were able ask new questions - and gain new insights - from the old data.

Explore further: Review examines rates and predictors of recurrence following surgery for Crohn's disease

More information: Lee, JC, Biasci, D, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn's disease. Nature Genetics; 9 Jan 2017; DOI: 10.1038/ng.3755

Related Stories

Review examines rates and predictors of recurrence following surgery for Crohn's disease

December 8, 2016
Some patients with Crohn's disease, a chronic inflammatory disease that affects the lining of the digestive tract, require surgery to remove part or all of the large intestine; however, surgery does not cure the condition ...

Gene variant linked to prognosis in inflammatory diseases

October 8, 2013
(Medical Xpress)—Researchers have identified a gene that is linked to long term disease outcome in Crohn's disease, a common inflammatory bowel disorder, and rheumatoid arthritis. The findings reveal targets that could ...

Crohn's disease gene discovery points towards new treatments

August 26, 2014
Genetic changes that occur in patients with the bowel condition Crohn's disease could hold clues to fighting the illness.

Genome study identifies risk genes in African Americans with inflammatory bowel disease

October 20, 2016
In the first genome-wide association study (GWAS) of genetic risk factors for inflammatory bowel disease in African Americans, a research team has identified two regions of the genome (loci) associated with ulcerative colitis ...

Recommended for you

A rogue gene is causing seizures in babies—here's how scientists wants to stop it

July 26, 2017
Two rare diseases caused by a malfunctioning gene that triggers seizures or involuntary movements in children as early as a few days old have left scientists searching for answers and better treatment options.

Scientists provide insight into genetic basis of neuropsychiatric disorders

July 21, 2017
A study by scientists at the Children's Medical Center Research Institute at UT Southwestern (CRI) is providing insight into the genetic basis of neuropsychiatric disorders. In this research, the first mouse model of a mutation ...

Scientists identify new way cells turn off genes

July 19, 2017
Cells have more than one trick up their sleeve for controlling certain genes that regulate fetal growth and development.

South Asian genomes could be boon for disease research, scientists say

July 18, 2017
The Indian subcontinent's massive population is nearing 1.5 billion according to recent accounts. But that population is far from monolithic; it's made up of nearly 5,000 well-defined sub-groups, making the region one of ...

Mutant yeast reveals details of the aberrant genomic machinery of children's high-grade gliomas

July 18, 2017
St. Jude Children's Research Hospital biologists have used engineered yeast cells to discover how a mutation that is frequently found in pediatric brain tumor high-grade glioma triggers a cascade of genomic malfunctions.

Late-breaking mutations may play an important role in autism

July 17, 2017
A study of nearly 6,000 families, combining three genetic sequencing technologies, finds that mutations that occur after conception play an important role in autism. A team led by investigators at Boston Children's Hospital ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.